1,255 research outputs found

    Atlas construction and image analysis using statistical cardiac models

    Get PDF
    International audienceThis paper presents a brief overview of current trends in the construction of population and multi-modal heart atlases in our group and their application to atlas-based cardiac image analysis. The technical challenges around the construction of these atlases are organized around two main axes: groupwise image registration of anatomical, motion and fiber images and construction of statistical shape models. Application-wise, this paper focuses on the extraction of atlas-based biomarkers for the detection of local shape or motion abnormalities, addressing several cardiac applications where the extracted information is used to study and grade different pathologies. The paper is concluded with a discussion about the role of statistical atlases in the integration of multiple information sources and the potential this can bring to in-silico simulations

    Statistical atlases for electroanatomical mapping of cardiac arrhythmias

    Get PDF
    Electroanatomical mapping is a mandatory time-consuming planning step in cardiac catheter ablation. In practice, interventional cardiologists target specific endocardial areas for mapping based on personal experience, general electrophysiology principles, and preoperative anatomical scans. Effective fusion of all available information towards a useful mapping strategy has not been standardised and achieving the optimal map within time and space constraints is challenging. In this paper, a novel framework for computing optimal endocardial mapping locations in patients with congenital heart disease (CHD) is proposed. The method is based on a statistical electroanatomical model (SEAM) which is instantiated from preoperative anatomy in order to achieve an initial prediction of the electrical map. Simultaneously, the anatomical areas with the highest frequency of mapping among the similar cases in the dataset are detected and a classifier is trained to filter these points based on the electroanatomical data. The framework was tested in an iterative process of adding mapping points to the SEAM and computing the instantiation error, with retrospective clinical data of 66 CHD cases available

    Septal Flash Assessment on CRT Candidates Based on Statistical Atlases of Motion

    Get PDF
    International audienceIn this paper, we propose a complete framework for the automatic detection and quantification of abnormal heart motion patterns using Statistical Atlases of Motion built from healthy populations. The method is illustrated on CRT patients with identified cardiac dyssyn-chrony and abnormal septal motion on 2D ultrasound (US) sequences. The use of the 2D US modality guarantees that the temporal resolution of the image sequences is high enough to work under a small displacements hypothesis. Under this assumption, the computed displacement fields can be directly considered as cardiac velocities. Comparison of subjects acquired with different spatiotemporal resolutions implies the reorientation and temporal normalization of velocity fields in a common space of coordinates. Statistics are then performed on the reoriented vector fields. Results show the ability of the method to correctly detect abnormal motion patterns and quantify their distance to normality. The use of local p-values for quantifying abnormal motion patterns is believed to be a promising strategy for computing new markers of cardiac dyssynchrony for better characterizing CRT candidates

    Left Ventricle Myocardium Segmentation from 3D Cardiac MR Images using Combined Probabilistic Atlas and Graph Cut-based Approaches

    Get PDF
    Medical imaging modalities, including Computed Tomography (CT) Magnetic Resonance Imaging (MRI) and Ultrasound (US) are critical for the diagnosis and progress monitoring of many cardiac conditions, planning, visualization and delivery of therapy via minimally invasive intervention procedures, as well as for teaching, training and simulation applications. Image segmentation is a processing technique that allows the user to extract the necessary information from an image dataset, in the form of a surface model of the region of interest from the anatomy. A wide variety of segmentation techniques have been developed and implemented for cardiac MR images. Despite their complexity and performance, many of them are intended for specific image datasets or are too specific to be employed for segmenting classical clinical quality Magnetic Resonance (MR) images. Graph Cut based segmentation algorithms have been shown to work well in regards to medical image segmentation. In addition, they are computationally efficient, which scales well to real time applications. While the basic graph cuts algorithms use lower-order statistics, combining this segmentation approach with atlas-based methods may help improve segmentation accuracy at a lower computational cost. The proposed technique will be tested at each step during the development by assessing the segmentation results against the available ground truth segmentation. Several metrics will be used to quantify the performance of the proposed technique, including computational performance, segmentation accuracy and fidelity assessed via the Sørensen-Dice Coefficient (DSC), Mean Absolute Distance (MAD) and Hausdorff Distance (HD) metrics

    Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach

    Get PDF
    Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic resonance (CMR) image segmentation. However, most approaches have focused on learning image intensity features for segmentation, whereas the incorporation of anatomical shape priors has received less attention. In this paper, we combine a multi-task deep learning approach with atlas propagation to develop a shape-constrained bi-ventricular segmentation pipeline for short-axis CMR volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns segmentation and landmark localisation tasks simultaneously. The architecture of the proposed FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs networks and the capability of addressing 3D spatial consistency without compromising segmentation accuracy. Moreover, the refinement step is designed to explicitly enforce a shape constraint and improve segmentation quality. This step is effective for overcoming image artefacts (e.g. due to different breath-hold positions and large slice thickness), which preclude the creation of anatomically meaningful 3D cardiac shapes. The proposed pipeline is fully automated, due to network's ability to infer landmarks, which are then used downstream in the pipeline to initialise atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that our proposed method is robust and capable of producing accurate, high-resolution and anatomically smooth bi-ventricular 3D models, despite the artefacts in input CMR volumes

    A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities

    Get PDF
    International audienceIn this paper, we present a new method for the automatic comparison of myocardial motion patterns and the characterization of their degree of abnormality, based on a statistical atlas of motion built from a reference healthy population. Our main contribution is the computation of atlas-based indexes that quantify the abnormality in the motion of a given subject against a reference population, at every location in time and space. The critical computational cost inherent to the construction of an atlas is highly reduced by the definition of myocardial velocities under a small displacements hypothesis. The indexes we propose are of notable interest for the assessment of anomalies in cardiac mobility and synchronicity when applied, for instance, to candidate selection for cardiac resynchronization therapy (CRT). We built an atlas of normality using 2D ultrasound cardiac sequences from 21 healthy volunteers, to which we compared 14 CRT patients with left ventricular dyssynchrony (LVDYS). We illustrate the potential of our approach in characterizing septal flash, a specific motion pattern related to LVDYS and recently introduced as a very good predictor of response to CRT

    Robust registration between cardiac MRI images and atlas for segmentation propagation

    Full text link
    We propose a new framework to propagate the labels in a heart atlas to the cardiac MRI images for ventricle segmentations based on image registrations. The method employs the anatomical information from the atlas as priors to constrain the initialisation between the atlas and the MRI images using region based registrations. After the initialisation which minimises the possibility of local misalignments, a fluid registration is applied to fine-tune the labelling in the atlas to the detail in the MRI images. The heart shape from the atlas does not have to be representative of that of the segmented MRI images in terms of morphological variations of the heart in this framework. In the experiments, a cadaver heart atlas and a normal heart atlas were used to register to in-vivo data for ventricle segmentation propagations. The results have shown that the segmentations based on the proposed method are visually acceptable, accurate (surface distance against manual segmentations is 1.0 ± 1.0 mm in healthy volunteer data, and 1.6 ± 1.8 mm in patient data), and reproducible (0.7 ± 1.0 mm) for in-vivo cardiac MRI images. The experiments also show that the new initialisation method can correct the local misalignments and help to avoid producing unrealistic deformations in the nonrigid registrations with 21% quantitative improvement of the segmentation accuracy
    corecore