12,423 research outputs found

    Unordered Error-Correcting Codes and their Applications

    Get PDF
    We give efficient constructions for error correcting unordered {ECU) codes, i.e., codes such that any pair of codewords are at a certain minimal distance apart and at the same time they are unordered. These codes are used for detecting a predetermined number of (symmetric) errors and for detecting all unidirectional errors. We also give an application in parallel asynchronous communications

    On q-ary codes correcting all unidirectional errors of a limited magnitude

    Full text link
    We consider codes over the alphabet Q={0,1,..,q-1}intended for the control of unidirectional errors of level l. That is, the transmission channel is such that the received word cannot contain both a component larger than the transmitted one and a component smaller than the transmitted one. Moreover, the absolute value of the difference between a transmitted component and its received version is at most l. We introduce and study q-ary codes capable of correcting all unidirectional errors of level l. Lower and upper bounds for the maximal size of those codes are presented. We also study codes for this aim that are defined by a single equation on the codeword coordinates(similar to the Varshamov-Tenengolts codes for correcting binary asymmetric errors). We finally consider the problem of detecting all unidirectional errors of level l.Comment: 22 pages,no figures. Accepted for publication of Journal of Armenian Academy of Sciences, special issue dedicated to Rom Varshamo

    A coding approach for detection of tampering in write-once optical disks

    Get PDF
    We present coding methods for protecting against tampering of write-once optical disks, which turns them into a secure digital medium for applications where critical information must be stored in a way that prevents or allows detection of an attempt at falsification. Our method involves adding a small amount of redundancy to a modulated sector of data. This extra redundancy is not used for normal operation, but can be used for determining, say, as a testimony in court, that a disk has not been tampered with

    Constructions of skew-tolerant and skew-detecting codes

    Get PDF
    The paradigm of skew-tolerant parallel asynchronous communication was introduced by Blaum and Bruck (see ibid., vol. 39, 1993) along with constructions for codes that can tolerate or detect skew. Some of these constructions were improved by Khachatrian (1991). In this paper these constructions are improved upon further, and the authors prove that the new constructions are, in a certain sense, optimal

    Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories

    Get PDF
    Several physical effects that limit the reliability and performance of multilevel flash memories induce errors that have low magnitudes and are dominantly asymmetric. This paper studies block codes for asymmetric limited-magnitude errors over q-ary channels. We propose code constructions and bounds for such channels when the number of errors is bounded by t and the error magnitudes are bounded by ℓ. The constructions utilize known codes for symmetric errors, over small alphabets, to protect large-alphabet symbols from asymmetric limited-magnitude errors. The encoding and decoding of these codes are performed over the small alphabet whose size depends only on the maximum error magnitude and is independent of the alphabet size of the outer code. Moreover, the size of the codes is shown to exceed the sizes of known codes (for related error models), and asymptotic rate-optimality results are proved. Extensions of the construction are proposed to accommodate variations on the error model and to include systematic codes as a benefit to practical implementation

    Coding for skew-tolerant parallel asynchronous communications

    Get PDF
    A communication channel consisting of several subchannels transmitting simultaneously and asynchronously is considered, an example being a board with several chips, where the subchannels are wires connecting the chips and differences in the lengths of the wires can result in asynchronous reception. A scheme that allows transmission without an acknowledgment of the message, therefore permitting pipelined communication and providing a higher bandwidth, is described. The scheme allows a certain number of transitions from a second message to arrive before reception of the current message has been completed, a condition called skew. Necessary and sufficient conditions for codes that can detect skew as well as for codes that are skew-tolerant, i.e. can correct the skew and allow continuous operation, are derived. Codes that satisfy the necessary and sufficient conditions are constructed, their optimality is studied, and efficient decoding algorithms are devised. Potential applications of the scheme are in on-chip, on-board, and board to board communications, enabling much higher communication bandwidth

    A Computational Framework for Efficient Error Correcting Codes Using an Artificial Neural Network Paradigm.

    Get PDF
    The quest for an efficient computational approach to neural connectivity problems has undergone a significant evolution in the last few years. The current best systems are far from equaling human performance, especially when a program of instructions is executed sequentially as in a von Neuman computer. On the other hand, neural net models are potential candidates for parallel processing since they explore many competing hypotheses simultaneously using massively parallel nets composed of many computational elements connected by links with variable weights. Thus, the application of modeling of a neural network must be complemented by deep insight into how to embed algorithms for an error correcting paradigm in order to gain the advantage of parallel computation. In this dissertation, we construct a neural network for single error detection and correction in linear codes. Then we present an error-detecting paradigm in the framework of neural networks. We consider the problem of error detection of systematic unidirectional codes which is assumed to have double or triple errors. The generalization of network construction for the error-detecting codes is discussed with a heuristic algorithm. We also describe models of the code construction, detection and correction of t-EC/d-ED/AUED (t-Error Correcting/d-Error Detecting/All Unidirectional Error Detecting) codes which are more general codes in the error correcting paradigm
    corecore