20,871 research outputs found

    The NASA Spitzer Space Telescope

    Get PDF
    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991–2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/

    Use of scanned detection in optical position encoders

    No full text
    Published versio

    Accelerated Modeling of Near and Far-Field Diffraction for Coronagraphic Optical Systems

    Full text link
    Accurately predicting the performance of coronagraphs and tolerancing optical surfaces for high-contrast imaging requires a detailed accounting of diffraction effects. Unlike simple Fraunhofer diffraction modeling, near and far-field diffraction effects, such as the Talbot effect, are captured by plane-to-plane propagation using Fresnel and angular spectrum propagation. This approach requires a sequence of computationally intensive Fourier transforms and quadratic phase functions, which limit the design and aberration sensitivity parameter space which can be explored at high-fidelity in the course of coronagraph design. This study presents the results of optimizing the multi-surface propagation module of the open source Physical Optics Propagation in PYthon (POPPY) package. This optimization was performed by implementing and benchmarking Fourier transforms and array operations on graphics processing units, as well as optimizing multithreaded numerical calculations using the NumExpr python library where appropriate, to speed the end-to-end simulation of observatory and coronagraph optical systems. Using realistic systems, this study demonstrates a greater than five-fold decrease in wall-clock runtime over POPPY's previous implementation and describes opportunities for further improvements in diffraction modeling performance.Comment: Presented at SPIE ASTI 2018, Austin Texas. 11 pages, 6 figure

    The XMM-Newton serendipitous ultraviolet source survey catalogue

    Get PDF
    The XMM-Newton Serendipitous Ultraviolet Source Survey (XMM-SUSS) is a catalogue of ultraviolet (UV) sources detected serendipitously by the Optical Monitor (XMM-OM) on-board the XMM-Newton observatory. The catalogue contains ultraviolet-detected sources collected from 2,417 XMM-OM observations in 1-6 broad band UV and optical filters, made between 24 February 2000 and 29 March 2007. The primary contents of the catalogue are source positions, magnitudes and fluxes in 1 to 6 passbands, and these are accompanied by profile diagnostics and variability statistics. The XMM-SUSS is populated by 753,578 UV source detections above a 3 sigma signal-to-noise threshold limit which relate to 624,049 unique objects. Taking account of substantial overlaps between observations, the net sky area covered is 29-54 square degrees, depending on UV filter. The magnitude distributions peak at 20.2, 20.9 and 21.2 in UVW2, UVM2 and UVW1 respectively. More than 10 per cent of sources have been visited more than once using the same filter during XMM-Newton operation, and > 20 per cent of sources are observed more than once per filter during an individual visit. Consequently, the scope for science based on temporal source variability on timescales of hours to years is broad. By comparison with other astrophysical catalogues we test the accuracy of the source measurements and define the nature of the serendipitous UV XMM-OM source sample. The distributions of source colours in the UV and optical filters are shown together with the expected loci of stars and galaxies, and indicate that sources which are detected in multiple UV bands are predominantly star-forming galaxies and stars of type G or earlier.Comment: Accepted for publication in MNRA

    n-Dimensional Optical Orthogonal Codes, Bounds and Optimal Constructions

    Full text link
    We generalized to higher dimensions the notions of optical orthogonal codes. We establish uper bounds on the capacity of general n n -dimensional OOCs, and on specific types of ideal codes (codes with zero off-peak autocorrelation). The bounds are based on the Johnson bound, and subsume many of the bounds that are typically applied to codes of dimension three or less. We also present two new constructions of ideal codes; one furnishes an infinite family of optimal codes for each dimension n≥2 n\ge 2 , and another which provides an asymptotically optimal family for each dimension n≥2 n\ge 2 . The constructions presented are based on certain point-sets in finite projective spaces of dimension kk over GF(q)GF(q) denoted PG(k,q)PG(k,q).Comment: 13 pages. arXiv admin note: text overlap with arXiv:1702.0645

    FIREWORKS U38-to-24 micron photometry of the GOODS-CDFS: multi-wavelength catalog and total IR properties of distant Ks-selected galaxies

    Full text link
    We present a Ks-selected catalog, dubbed FIREWORKS, for the Chandra Deep Field South (CDFS) containing photometry in U_38, B_435, B, V, V_606, R, i_775, I, z_850, J, H, Ks, [3.6 um], [4.5 um], [5.8 um], [8.0 um], and the MIPS [24 um] band. The imaging has a typical Ks limit of 24.3 mag (5 sigma, AB) and coverage over 113 arcmin^2 in all bands and 138 arcmin^2 in all bands but H. We cross-correlate our catalog with the 1 Ms X-ray catalog by Giacconi et al. (2002) and with all available spectroscopic redshifts to date. We find and explain systematic differences in a comparison with the 'z_850 + Ks'-selected GOODS-MUSIC catalog that covers ~90% of the field. We exploit the U38-to-24 micron photometry to determine which Ks-selected galaxies at 1.5<z<2.5 have the brightest total IR luminosities and which galaxies contribute most to the integrated total IR emission. The answer to both questions is that red galaxies are dominating in the IR. This is true no matter whether color is defined in the rest-frame UV, optical, or optical-to-NIR. We do find however that among the reddest galaxies in the rest-frame optical, there is a population of sources with only little mid-IR emission, suggesting a quiescent nature.Comment: Accepted for publication in the Astrophysical Journal, 20 pages, 10 figures, reference to website correcte
    • …
    corecore