650 research outputs found

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy

    Representation and parsing of multiword expressions

    Get PDF
    This book consists of contributions related to the definition, representation and parsing of MWEs. These reflect current trends in the representation and processing of MWEs. They cover various categories of MWEs such as verbal, adverbial and nominal MWEs, various linguistic frameworks (e.g. tree-based and unification-based grammars), various languages including English, French, Modern Greek, Hebrew, Norwegian), and various applications (namely MWE detection, parsing, automatic translation) using both symbolic and statistical approaches

    Current trends

    Get PDF
    Deep parsing is the fundamental process aiming at the representation of the syntactic structure of phrases and sentences. In the traditional methodology this process is based on lexicons and grammars representing roughly properties of words and interactions of words and structures in sentences. Several linguistic frameworks, such as Headdriven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree Adjoining Grammar (TAG), Combinatory Categorial Grammar (CCG), etc., offer different structures and combining operations for building grammar rules. These already contain mechanisms for expressing properties of Multiword Expressions (MWE), which, however, need improvement in how they account for idiosyncrasies of MWEs on the one hand and their similarities to regular structures on the other hand. This collaborative book constitutes a survey on various attempts at representing and parsing MWEs in the context of linguistic theories and applications

    Knowledge Expansion of a Statistical Machine Translation System using Morphological Resources

    Get PDF
    Translation capability of a Phrase-Based Statistical Machine Translation (PBSMT) system mostly depends on parallel data and phrases that are not present in the training data are not correctly translated. This paper describes a method that efficiently expands the existing knowledge of a PBSMT system without adding more parallel data but using external morphological resources. A set of new phrase associations is added to translation and reordering models; each of them corresponds to a morphological variation of the source/target/both phrases of an existing association. New associations are generated using a string similarity score based on morphosyntactic information. We tested our approach on En-Fr and Fr-En translations and results showed improvements of the performance in terms of automatic scores (BLEU and Meteor) and reduction of out-of-vocabulary (OOV) words. We believe that our knowledge expansion framework is generic and could be used to add different types of information to the model.JRC.G.2-Global security and crisis managemen

    D6.1: Technologies and Tools for Lexical Acquisition

    Get PDF
    This report describes the technologies and tools to be used for Lexical Acquisition in PANACEA. It includes descriptions of existing technologies and tools which can be built on and improved within PANACEA, as well as of new technologies and tools to be developed and integrated in PANACEA platform. The report also specifies the Lexical Resources to be produced. Four main areas of lexical acquisition are included: Subcategorization frames (SCFs), Selectional Preferences (SPs), Lexical-semantic Classes (LCs), for both nouns and verbs, and Multi-Word Expressions (MWEs)

    Exploratory Search on Mobile Devices

    Get PDF
    The goal of this thesis is to provide a general framework (MobEx) for exploratory search especially on mobile devices. The central part is the design, implementation, and evaluation of several core modules for on-demand unsupervised information extraction well suited for exploratory search on mobile devices and creating the MobEx framework. These core processing elements, combined with a multitouch - able user interface specially designed for two families of mobile devices, i.e. smartphones and tablets, have been finally implemented in a research prototype. The initial information request, in form of a query topic description, is issued online by a user to the system. The system then retrieves web snippets by using standard search engines. These snippets are passed through a chain of NLP components which perform an ondemand or ad-hoc interactive Query Disambiguation, Named Entity Recognition, and Relation Extraction task. By on-demand or ad-hoc we mean the components are capable to perform their operations on an unrestricted open domain within special time constraints. The result of the whole process is a topic graph containing the detected associated topics as nodes and the extracted relation ships as labelled edges between the nodes. The Topic Graph is presented to the user in different ways depending on the size of the device she is using. Various evaluations have been conducted that help us to understand the potentials and limitations of the framework and the prototype

    Unsupervised induction of semantic roles

    Get PDF
    In recent years, a considerable amount of work has been devoted to the task of automatic frame-semantic analysis. Given the relative maturity of syntactic parsing technology, which is an important prerequisite, frame-semantic analysis represents a realistic next step towards broad-coverage natural language understanding and has been shown to benefit a range of natural language processing applications such as information extraction and question answering. Due to the complexity which arises from variations in syntactic realization, data-driven models based on supervised learning have become the method of choice for this task. However, the reliance on large amounts of semantically labeled data which is costly to produce for every language, genre and domain, presents a major barrier to the widespread application of the supervised approach. This thesis therefore develops unsupervised machine learning methods, which automatically induce frame-semantic representations without making use of semantically labeled data. If successful, unsupervised methods would render manual data annotation unnecessary and therefore greatly benefit the applicability of automatic framesemantic analysis. We focus on the problem of semantic role induction, in which all the argument instances occurring together with a specific predicate in a corpus are grouped into clusters according to their semantic role. Our hypothesis is that semantic roles can be induced without human supervision from a corpus of syntactically parsed sentences, by leveraging the syntactic relations conveyed through parse trees with lexical-semantic information. We argue that semantic role induction can be guided by three linguistic principles. The first is the well-known constraint that semantic roles are unique within a particular frame. The second is that the arguments occurring in a specific syntactic position within a specific linking all bear the same semantic role. The third principle is that the (asymptotic) distribution over argument heads is the same for two clusters which represent the same semantic role. We consider two approaches to semantic role induction based on two fundamentally different perspectives on the problem. Firstly, we develop feature-based probabilistic latent structure models which capture the statistical relationships that hold between the semantic role and other features of an argument instance. Secondly, we conceptualize role induction as the problem of partitioning a graph whose vertices represent argument instances and whose edges express similarities between these instances. The graph thus represents all the argument instances for a particular predicate occurring in the corpus. The similarities with respect to different features are represented on different edge layers and accordingly we develop algorithms for partitioning such multi-layer graphs. We empirically validate our models and the principles they are based on and show that our graph partitioning models have several advantages over the feature-based models. In a series of experiments on both English and German the graph partitioning models outperform the feature-based models and yield significantly better scores over a strong baseline which directly identifies semantic roles with syntactic positions. In sum, we demonstrate that relatively high-quality shallow semantic representations can be induced without human supervision and foreground a promising direction of future research aimed at overcoming the problem of acquiring large amounts of lexicalsemantic knowledge

    Unsupervised Induction of Semantic Roles within a Reconstruction-Error Minimization Framework

    Get PDF
    We introduce a new approach to unsupervised estimation of feature-rich semantic role labeling models. Our model consists of two components: (1) an encoding component: a semantic role labeling model which predicts roles given a rich set of syntactic and lexical features; (2) a reconstruction component: a tensor factorization model which relies on roles to predict argument fillers. When the components are estimated jointly to minimize errors in argument reconstruction, the induced roles largely correspond to roles defined in annotated resources. Our method performs on par with most accurate role induction methods on English and German, even though, unlike these previous approaches, we do not incorporate any prior linguistic knowledge about the languages
    • …
    corecore