473 research outputs found

    Statistical Shape Modelling and Segmentation of the Respiratory Airway

    Get PDF
    The human respiratory airway consists of the upper (nasal cavity, pharynx) and the lower (trachea, bronchi) respiratory tracts. Accurate segmentation of these two airway tracts can lead to better diagnosis and interpretation of airway-specific diseases, and lead to improvement in the localization of abnormal metabolic or pathological sites found within and/or surrounding the respiratory regions. Due to the complexity and the variability displayed in the anatomical structure of the upper respiratory airway along with the challenges in distinguishing the nasal cavity from non-respiratory regions such as the paranasal sinuses, it is difficult for existing algorithms to accurately segment the upper airway without manual intervention. This thesis presents an implicit non-parametric framework for constructing a statistical shape model (SSM) of the upper and lower respiratory tract, capable of distinct shape generation and be adapted for segmentation. An SSM of the nasal cavity was successfully constructed using 50 nasal CT scans. The performance of the SSM was evaluated for compactness, specificity and generality. An averaged distance error of 1.47 mm was measured for the generality assessment. The constructed SSM was further adapted with a modified locally constrained random walk algorithm to segment the nasal cavity. The proposed algorithm was evaluated on 30 CT images and outperformed comparative state-of-the-art and conventional algorithms. For the lower airway, a separate algorithm was proposed to automatically segment the trachea and bronchi, and was designed to tolerate the image characteristics inherent in low-contrast CT images. The algorithm was evaluated on 20 clinical low-contrast CT from PET-CT patient studies and demonstrated better performance (87.1±2.8 DSC and distance error of 0.37±0.08 mm) in segmentation results against comparative state-of-the-art algorithms

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Atlas-Based Methods in Radiotherapy Treatment of Head and Neck Cancer

    Get PDF
    Radiotherapy is one of the principal methods for treating head and neck cancer (HNC). It plays an important role in the curative and palliative treatment of HNC. It uses high-energy radiation beams to kill cancer cells by damaging their DNA. Radiotherapy planning depends upon complex algorithms to determine the best trajectories and intensities of those beams by simulating their effects passing through designated areas. This requires accurate segmentation of anatomical structures and knowledge of the relative electron density within a patient body. Computed tomography (CT) has been the modality of choice in radiotherapy planning. It offers a wealth of anatomical information and is critical in providing information about the relative electron density of tissues required to calculate radiation deposited at any one site. Manual segmentation is time-consuming and is becoming impractical with the increasing demand in image acquisition for planning. Recently, planning solely based on magnetic resonance (MR) imaging has gained popularity as it provides superior soft tissue contrast compared to CT imaging and can better facilitate the process of segmentation. However, MR imaging does not provide electron density information for dose calculation. With the growing volumes of data and data repositories, algorithms based on atlases have gained popularity as they provide prior information for structure segmentation and tissue classification. In this PhD thesis, I demonstrate that atlas-based methods can be used for segmenting head and neck structures giving results as comparable as manual segmentation. In addition, I demonstrate that those methods can be used to support radiotherapy treatment solely based on MR imaging by generating synthetic CT images. The radiation doses calculated from a synthetic and real CT image agreed well, showing the clinical feasibility of methods based on atlases. In conclusion, I show that atlas-based methods are clinically relevant in radiotherapy treatment

    Low-Rank Atlas Image Analyses in the Presence of Pathologies

    Get PDF
    We present a common framework, for registering images to an atlas and for forming an unbiased atlas, that tolerates the presence of pathologies such as tumors and traumatic brain injury lesions. This common framework is particularly useful when a sufficient number of protocol-matched scans from healthy subjects cannot be easily acquired for atlas formation and when the pathologies in a patient cause large appearance changes

    Brain MR Image Segmentation: From Multi-Atlas Method To Deep Learning Models

    Get PDF
    Quantitative analysis of the brain structures on magnetic resonance (MR) images plays a crucial role in examining brain development and abnormality, as well as in aiding the treatment planning. Although manual delineation is commonly considered as the gold standard, it suffers from the shortcomings in terms of low efficiency and inter-rater variability. Therefore, developing automatic anatomical segmentation of human brain is of importance in providing a tool for quantitative analysis (e.g., volume measurement, shape analysis, cortical surface mapping). Despite a large number of existing techniques, the automatic segmentation of brain MR images remains a challenging task due to the complexity of the brain anatomical structures and the great inter- and intra-individual variability among these anatomical structures. To address the existing challenges, four methods are proposed in this thesis. The first work proposes a novel label fusion scheme for the multi-atlas segmentation. A two-stage majority voting scheme is developed to address the over-segmentation problem in the hippocampus segmentation of brain MR images. The second work of the thesis develops a supervoxel graphical model for the whole brain segmentation, in order to relieve the dependencies on complicated pairwise registration for the multi-atlas segmentation methods. Based on the assumption that pixels within a supervoxel are supposed to have the same label, the proposed method converts the voxel labeling problem to a supervoxel labeling problem which is solved by a maximum-a-posteriori (MAP) inference in Markov random field (MRF) defined on supervoxels. The third work incorporates attention mechanism into convolutional neural networks (CNN), aiming at learning the spatial dependencies between the shallow layers and the deep layers in CNN and producing an aggregation of the attended local feature and high-level features to obtain more precise segmentation results. The fourth method takes advantage of the success of CNN in computer vision, combines the strength of the graphical model with CNN, and integrates them into an end-to-end training network. The proposed methods are evaluated on public MR image datasets, such as MICCAI2012, LPBA40, and IBSR. Extensive experiments demonstrate the effectiveness and superior performance of the three proposed methods compared with the other state-of-the-art methods

    An Evaluation of Atlas Selection Methods for Atlas-Based Automatic Segmentation in Radiotherapy Treatment Planning

    Get PDF
    Atlas-based automatic segmentation is used \nin radiotherapy planning to accelerate the delineation of \norgans at risk (OARs). Atlas selection has been proposed \nas a way to improve the accuracy and execution time of \nsegmentation, assuming that, the more similar the atlas is to \nthe patient, the better the results will be. This paper presents \nan analysis of atlas selection methods in the context of \nradiotherapy treatment planning. For a range of commonly \ncontoured OARs, a thorough comparison of a large class \nof typical atlas selection methods has been performed. For \nthis evaluation, clinically contoured CT images of the head \nand neck (N = 316) and thorax (N = 280) were used. The \nstate-of-the-art intensity and deformation similarity-based \natlas selection methods were found to compare poorly to \nperfect atlas selection. Counter-intuitively, atlas selection \nmethods based on a fixed set of representative atlases \noutperformed atlas selection methods based on the patient \nimage. This study suggests that atlas-based segmentation \nwith currently available selection methods compares poorly \nto the potential best performance, hampering the clinical \nutility of atlas-based segmentation. Effective atlas selection \nremains an open challenge in atlas-based segmentation for \nradiotherapy planning

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    A Scheme for Automatically Building 3D Morphometric Anatomical Atlases: application to a Skull Atlas

    Get PDF
    International audienceWe present a general scheme for automatically building a morphometric anatomical atlas. We detail each stage of the method, including the non-rigid registration algorithm, three-dimensional line averaging and statistical processes. We apply the method to obtain a quantitative atlas of skull crest lines. Finally, we use the resulting atlas to study a craniofacial disease; we show how we can obtain qualitative and quantitative results by contrasting a skull affected by a mandible deformation with the atlas
    • …
    corecore