52,328 research outputs found

    Differentially Private Release and Learning of Threshold Functions

    Full text link
    We prove new upper and lower bounds on the sample complexity of (ϵ,δ)(\epsilon, \delta) differentially private algorithms for releasing approximate answers to threshold functions. A threshold function cxc_x over a totally ordered domain XX evaluates to cx(y)=1c_x(y) = 1 if yxy \le x, and evaluates to 00 otherwise. We give the first nontrivial lower bound for releasing thresholds with (ϵ,δ)(\epsilon,\delta) differential privacy, showing that the task is impossible over an infinite domain XX, and moreover requires sample complexity nΩ(logX)n \ge \Omega(\log^*|X|), which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we give an algorithm for releasing thresholds with n2(1+o(1))logXn \le 2^{(1+ o(1))\log^*|X|} samples. This improves the previous best upper bound of 8(1+o(1))logX8^{(1 + o(1))\log^*|X|} (Beimel et al., RANDOM '13). Our sample complexity upper and lower bounds also apply to the tasks of learning distributions with respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The lower bound gives the first separation between the sample complexity of properly learning a concept class with (ϵ,δ)(\epsilon,\delta) differential privacy and learning without privacy. For properly learning thresholds in \ell dimensions, this lower bound extends to nΩ(logX)n \ge \Omega(\ell \cdot \log^*|X|). To obtain our results, we give reductions in both directions from releasing and properly learning thresholds and the simpler interior point problem. Given a database DD of elements from XX, the interior point problem asks for an element between the smallest and largest elements in DD. We introduce new recursive constructions for bounding the sample complexity of the interior point problem, as well as further reductions and techniques for proving impossibility results for other basic problems in differential privacy.Comment: 43 page

    Volume-Enclosing Surface Extraction

    Full text link
    In this paper we present a new method, which allows for the construction of triangular isosurfaces from three-dimensional data sets, such as 3D image data and/or numerical simulation data that are based on regularly shaped, cubic lattices. This novel volume-enclosing surface extraction technique, which has been named VESTA, can produce up to six different results due to the nature of the discretized 3D space under consideration. VESTA is neither template-based nor it is necessarily required to operate on 2x2x2 voxel cell neighborhoods only. The surface tiles are determined with a very fast and robust construction technique while potential ambiguities are detected and resolved. Here, we provide an in-depth comparison between VESTA and various versions of the well-known and very popular Marching Cubes algorithm for the very first time. In an application section, we demonstrate the extraction of VESTA isosurfaces for various data sets ranging from computer tomographic scan data to simulation data of relativistic hydrodynamic fireball expansions.Comment: 24 pages, 33 figures, 4 tables, final versio
    corecore