51,158 research outputs found

    Construction of Codes for Network Coding

    Full text link
    Based on ideas of K\"otter and Kschischang we use constant dimension subspaces as codewords in a network. We show a connection to the theory of q-analogues of a combinatorial designs, which has been studied in Braun, Kerber and Laue as a purely combinatorial object. For the construction of network codes we successfully modified methods (construction with prescribed automorphisms) originally developed for the q-analogues of a combinatorial designs. We then give a special case of that method which allows the construction of network codes with a very large ambient space and we also show how to decode such codes with a very small number of operations

    Large Constant Dimension Codes and Lexicodes

    Full text link
    Constant dimension codes, with a prescribed minimum distance, have found recently an application in network coding. All the codewords in such a code are subspaces of \F_q^n with a given dimension. A computer search for large constant dimension codes is usually inefficient since the search space domain is extremely large. Even so, we found that some constant dimension lexicodes are larger than other known codes. We show how to make the computer search more efficient. In this context we present a formula for the computation of the distance between two subspaces, not necessarily of the same dimension.Comment: submitted for ALCOMA1

    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs

    Get PDF
    A novel technique, based on the pseudo-random properties of certain graphs known as expanders, is used to obtain novel simple explicit constructions of asymptotically good codes. In one of the constructions, the expanders are used to enhance Justesen codes by replicating, shuffling, and then regrouping the code coordinates. For any fixed (small) rate, and for a sufficiently large alphabet, the codes thus obtained lie above the Zyablov bound. Using these codes as outer codes in a concatenated scheme, a second asymptotic good construction is obtained which applies to small alphabets (say, GF(2)) as well. Although these concatenated codes lie below the Zyablov bound, they are still superior to previously known explicit constructions in the zero-rate neighborhood

    Tables of subspace codes

    Get PDF
    One of the main problems of subspace coding asks for the maximum possible cardinality of a subspace code with minimum distance at least dd over Fqn\mathbb{F}_q^n, where the dimensions of the codewords, which are vector spaces, are contained in K⊆{0,1,…,n}K\subseteq\{0,1,\dots,n\}. In the special case of K={k}K=\{k\} one speaks of constant dimension codes. Since this (still) emerging field is very prosperous on the one hand side and there are a lot of connections to classical objects from Galois geometry it is a bit difficult to keep or to obtain an overview about the current state of knowledge. To this end we have implemented an on-line database of the (at least to us) known results at \url{subspacecodes.uni-bayreuth.de}. The aim of this recurrently updated technical report is to provide a user guide how this technical tool can be used in research projects and to describe the so far implemented theoretic and algorithmic knowledge.Comment: 44 pages, 6 tables, 7 screenshot
    • …
    corecore