19 research outputs found

    Construction of isodual codes from polycirculant matrices

    Full text link
    Double polycirculant codes are introduced here as a generalization of double circulant codes. When the matrix of the polyshift is a companion matrix of a trinomial, we show that such a code is isodual, hence formally self-dual. Numerical examples show that the codes constructed have optimal or quasi-optimal parameters amongst formally self-dual codes. Self-duality, the trivial case of isoduality, can only occur over \F_2 in the double circulant case. Building on an explicit infinite sequence of irreducible trinomials over \F_2, we show that binary double polycirculant codes are asymptotically good

    On the equivalence of linear cyclic and constacyclic codes

    Full text link
    We introduce new sufficient conditions for permutation and monomial equivalence of linear cyclic codes over various finite fields. We recall that monomial equivalence and isometric equivalence are the same relation for linear codes over finite fields. A necessary and sufficient condition for the monomial equivalence of linear cyclic codes through a shift map on their defining set is also given. Moreover, we provide new algebraic criteria for the monomial equivalence of constacyclic codes over F4\mathbb{F}_4. Finally, we prove that if gcd(3n,ϕ(3n))=1\gcd(3n,\phi(3n))=1, then all permutation equivalent constacyclic codes of length nn over F4\mathbb{F}_4 are given by the action of multipliers. The results of this work allow us to prune the search algorithm for new linear codes and discover record-breaking linear and quantum codes.Comment: 18 page

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Group Rings, G-Codes and Constructions of Self-Dual and Formally Self-Dual Codes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10623-017-0440-7We describe G-codes, which are codes that are ideals in a group ring, where the ring is a finite commutative Frobenius ring and G is an arbitrary finite group. We prove that the dual of a G-code is also a G-code. We give constructions of self-dual and formally self-dual codes in this setting and we improve the existing construction given in [13] by showing that one of the conditions given in the theorem is unnecessary and, moreover, it restricts the number of self-dual codes obtained by the construction. We show that several of the standard constructions of self-dual codes are found within our general framework. We prove that our constructed codes must have an automorphism group that contains G as a subgroup. We also prove that a common construction technique for producing self-dual codes cannot produce the putative [72, 36, 16] Type II code. Additionally, we show precisely which groups can be used to construct the extremal Type II codes over length 24 and 48. We define quasi-G codes and give a construction of these codes

    Polyadic Constacyclic Codes

    Full text link
    For any given positive integer mm, a necessary and sufficient condition for the existence of Type I mm-adic constacyclic codes is given. Further, for any given integer ss, a necessary and sufficient condition for ss to be a multiplier of a Type I polyadic constacyclic code is given. As an application, some optimal codes from Type I polyadic constacyclic codes, including generalized Reed-Solomon codes and alternant MDS codes, are constructed.Comment: We provide complete solutions on two basic questions on polyadic constacyclic cdes, and construct some optimal codes from the polyadic constacyclic cde
    corecore