696 research outputs found

    Sparse Recovery Analysis of Preconditioned Frames via Convex Optimization

    Get PDF
    Orthogonal Matching Pursuit and Basis Pursuit are popular reconstruction algorithms for recovery of sparse signals. The exact recovery property of both the methods has a relation with the coherence of the underlying redundant dictionary, i.e. a frame. A frame with low coherence provides better guarantees for exact recovery. An equivalent formulation of the associated linear system is obtained via premultiplication by a non-singular matrix. In view of bounds that guarantee sparse recovery, it is very useful to generate the preconditioner in such way that the preconditioned frame has low coherence as compared to the original. In this paper, we discuss the impact of preconditioning on sparse recovery. Further, we formulate a convex optimization problem for designing the preconditioner that yields a frame with improved coherence. In addition to reducing coherence, we focus on designing well conditioned frames and numerically study the relationship between the condition number of the preconditioner and the coherence of the new frame. Alongside theoretical justifications, we demonstrate through simulations the efficacy of the preconditioner in reducing coherence as well as recovering sparse signals.Comment: 9 pages, 5 Figure

    Compressed Sensing with Coherent and Redundant Dictionaries

    Get PDF
    This article presents novel results concerning the recovery of signals from undersampled data in the common situation where such signals are not sparse in an orthonormal basis or incoherent dictionary, but in a truly redundant dictionary. This work thus bridges a gap in the literature and shows not only that compressed sensing is viable in this context, but also that accurate recovery is possible via an L1-analysis optimization problem. We introduce a condition on the measurement/sensing matrix, which is a natural generalization of the now well-known restricted isometry property, and which guarantees accurate recovery of signals that are nearly sparse in (possibly) highly overcomplete and coherent dictionaries. This condition imposes no incoherence restriction on the dictionary and our results may be the first of this kind. We discuss practical examples and the implications of our results on those applications, and complement our study by demonstrating the potential of L1-analysis for such problems

    Algorithms for the Construction of Incoherent Frames Under Various Design Constraints

    Full text link
    Unit norm finite frames are generalizations of orthonormal bases with many applications in signal processing. An important property of a frame is its coherence, a measure of how close any two vectors of the frame are to each other. Low coherence frames are useful in compressed sensing applications. When used as measurement matrices, they successfully recover highly sparse solutions to linear inverse problems. This paper describes algorithms for the design of various low coherence frame types: real, complex, unital (constant magnitude) complex, sparse real and complex, nonnegative real and complex, and harmonic (selection of rows from Fourier matrices). The proposed methods are based on solving a sequence of convex optimization problems that update each vector of the frame. This update reduces the coherence with the other frame vectors, while other constraints on its entries are also imposed. Numerical experiments show the effectiveness of the methods compared to the Welch bound, as well as other competing algorithms, in compressed sensing applications

    Coherence Optimization and Best Complex Antipodal Spherical Codes

    Full text link
    Vector sets with optimal coherence according to the Welch bound cannot exist for all pairs of dimension and cardinality. If such an optimal vector set exists, it is an equiangular tight frame and represents the solution to a Grassmannian line packing problem. Best Complex Antipodal Spherical Codes (BCASCs) are the best vector sets with respect to the coherence. By extending methods used to find best spherical codes in the real-valued Euclidean space, the proposed approach aims to find BCASCs, and thereby, a complex-valued vector set with minimal coherence. There are many applications demanding vector sets with low coherence. Examples are not limited to several techniques in wireless communication or to the field of compressed sensing. Within this contribution, existing analytical and numerical approaches for coherence optimization of complex-valued vector spaces are summarized and compared to the proposed approach. The numerically obtained coherence values improve previously reported results. The drawback of increased computational effort is addressed and a faster approximation is proposed which may be an alternative for time critical cases
    corecore