163 research outputs found

    Compactly Supported Tensor Product Complex Tight Framelets with Directionality

    Full text link
    Although tensor product real-valued wavelets have been successfully applied to many high-dimensional problems, they can only capture well edge singularities along the coordinate axis directions. As an alternative and improvement of tensor product real-valued wavelets and dual tree complex wavelet transform, recently tensor product complex tight framelets with increasing directionality have been introduced in [8] and applied to image denoising in [13]. Despite several desirable properties, the directional tensor product complex tight framelets constructed in [8,13] are bandlimited and do not have compact support in the space/time domain. Since compactly supported wavelets and framelets are of great interest and importance in both theory and application, it remains as an unsolved problem whether there exist compactly supported tensor product complex tight framelets with directionality. In this paper, we shall satisfactorily answer this question by proving a theoretical result on directionality of tight framelets and by introducing an algorithm to construct compactly supported complex tight framelets with directionality. Our examples show that compactly supported complex tight framelets with directionality can be easily derived from any given eligible low-pass filters and refinable functions. Several examples of compactly supported tensor product complex tight framelets with directionality have been presented

    Nonhomogeneous Wavelet Systems in High Dimensions

    Full text link
    It is of interest to study a wavelet system with a minimum number of generators. It has been showed by X. Dai, D. R. Larson, and D. M. Speegle in [11] that for any dΓ—dd\times d real-valued expansive matrix M, a homogeneous orthonormal M-wavelet basis can be generated by a single wavelet function. On the other hand, it has been demonstrated in [21] that nonhomogeneous wavelet systems, though much less studied in the literature, play a fundamental role in wavelet analysis and naturally link many aspects of wavelet analysis together. In this paper, we are interested in nonhomogeneous wavelet systems in high dimensions with a minimum number of generators. As we shall see in this paper, a nonhomogeneous wavelet system naturally leads to a homogeneous wavelet system with almost all properties preserved. We also show that a nonredundant nonhomogeneous wavelet system is naturally connected to refinable structures and has a fixed number of wavelet generators. Consequently, it is often impossible for a nonhomogeneous orthonormal wavelet basis to have a single wavelet generator. However, for redundant nonhomogeneous wavelet systems, we show that for any dΓ—dd\times d real-valued expansive matrix M, we can always construct a nonhomogeneous smooth tight M-wavelet frame in L2(Rd)L_2(R^d) with a single wavelet generator whose Fourier transform is a compactly supported C∞C^\infty function. Moreover, such nonhomogeneous tight wavelet frames are associated with filter banks and can be modified to achieve directionality in high dimensions. Our analysis of nonhomogeneous wavelet systems employs a notion of frequency-based nonhomogeneous wavelet systems in the distribution space. Such a notion allows us to separate the perfect reconstruction property of a wavelet system from its stability in function spaces

    Modular frames for Hilbert C*-modules and symmetric approximation of frames

    Full text link
    We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related modular operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modulesover unital C*-algebras that admit an orthonormal Riesz basis. Interrelations and applications to classical linear frame theory are indicated. As an application we describe the nature of families of operators {S_i} such that SUM_i S*_iS_i=id_H, where H is a Hilbert space. Resorting to frames in Hilbert spaces we discuss some measures for pairs of frames to be close to one another. Most of the measures are expressed in terms of norm-distances of different kinds of frame operators. In particular, the existence and uniqueness of the closest (normalized) tight frame to a given frame is investigated. For Riesz bases with certain restrictions the set of closetst tight frames often contains a multiple of its symmetric orthogonalization (i.e. L\"owdin orthogonalization).Comment: SPIE's Annual Meeting, Session 4119: Wavelets in Signal and Image Processing; San Diego, CA, U.S.A., July 30 - August 4, 2000. to appear in: Proceedings of SPIE v. 4119(2000), 12 p
    • …
    corecore