54 research outputs found

    A Survey of ARX-based Symmetric-key Primitives

    Get PDF
    Addition Rotation XOR is suitable for fast implementation symmetric –key primitives, such as stream and block ciphers. This paper presents a review of several block and stream ciphers based on ARX construction followed by the discussion on the security analysis of symmetric key primitives where the best attack for every cipher was carried out. We benchmark the implementation on software and hardware according to the evaluation metrics. Therefore, this paper aims at providing a reference for a better selection of ARX design strategy

    Rotational Cryptanalysis in the Presence of Constants

    Get PDF
    Rotational cryptanalysis is a statistical method for attacking ARX constructions. It was previously shown that ARX-C, i.e., ARX with the injection of constants can be used to implement any function. In this paper we investigate how rotational cryptanalysis is affected when constants are injected into the state. We introduce the notion of an RX-difference, generalizing the idea of a rotational difference. We show how RX-differences behave around modular addition, and give a formula to calculate their transition probability. We experimentally verify the formula using Speck32/64, and present a 7-round distinguisher based on RX-differences. We then discuss two types of constants: round constants, and constants which are the result of using a fixed key, and provide recommendations to designers for optimal choice of parameters

    Automated Truncation of Differential Trails and Trail Clustering in ARX

    Get PDF
    We propose a tool for automated truncation of differential trails in ciphers using modular addition, bitwise rotation, and XOR (ARX). The tool takes as input a differential trail and produces as output a set of truncated differential trails. The set represents all possible truncations of the input trail according to certain predefined rules. A linear-time algorithm for the exact computation of the differential probability of a truncated trail that follows the truncation rules is proposed. We further describe a method to merge the set of truncated trails into a compact set of non-overlapping truncated trails with associated probability and we demonstrate the application of the tool on block cipher Speck64. We have also investigated the effect of clustering of differential trails around a fixed input trail. The best cluster that we have found for 15 rounds has probability 2^−55.03 (consisting of 389 unique output differences) which allows us to build a distinguisher using 128 times less data than the one based on just the single best trail, which has probability 2^−62. Moreover, we show examples for Speck64 where a cluster of trails around a suboptimal (in terms of probability) input trail results in higher overall probability compared to a cluster obtained around the best differential trail

    Automatic Search for the Best Trails in ARX: Application to Block Cipher Speck

    Get PDF
    We propose the first adaptation of Matsui's algorithm for finding the best differential and linear trails to the class of ARX ciphers. It is based on a branch-and-bound search strategy, does not use any heuristics and returns optimal results. The practical application of the new algorithm is demonstrated on reduced round variants of block ciphers from the Speck family. More specifically, we report the probabilities of the best differential trails for up to 10, 9, 8, 7, and 7 rounds of Speck32, Speck48, Speck64, Speck96 and Speck128 respectively, together with the exact number of differential trails that have the best probability. The new results are used to compute bounds, under the Markov assumption, on the security of Speck against single-trail differential cryptanalysis. Finally, we propose two new ARX primitives with provable bounds against single-trail differential and linear cryptanalysis -- a long standing open problem in the area of ARX design

    Side Channel Attacks on IoT Applications

    Get PDF

    Mixed Integer Programming Models for Finite Automaton and Its Application to Additive Differential Patterns of Exclusive-Or

    Get PDF
    Inspired by Fu et al. work on modeling the exclusive-or differential property of the modulo addition as an mixed-integer programming problem, we propose a method with which any finite automaton can be formulated as an mixed-integer programming model. Using this method, we show how to construct a mixed integer programming model whose feasible region is the set of all differential patterns (α,β,γ)(\alpha, \beta, \gamma)\u27s, such that adp⊕(α,β→γ)=Prx,y[((x+α)⊕(y+β))−(x⊕y)=γ]>0{\rm adp}^\oplus(\alpha, \beta \rightarrow \gamma) = {\rm Pr}_{x,y}[((x + \alpha) \oplus (y + \beta))-(x \oplus y) = \gamma] > 0. We expect that this may be useful in automatic differential analysis with additive difference

    Rotational Differential-Linear Distinguishers of ARX Ciphers with Arbitrary Output Linear Masks

    Get PDF
    The rotational differential-linear attacks, proposed at EUROCRYPT 2021, is a generalization of differential-linear attacks by replacing the differential part of the attacks with rotational differentials. At EUROCRYPT 2021, Liu et al. presented a method based on Morawiecki et al.’s technique (FSE 2013) for evaluating the rotational differential-linear correlations for the special cases where the output linear masks are unit vectors. With this method, some powerful (rotational) differential-linear distinguishers with output linear masks being unit vectors against Friet, Xoodoo, and Alzette were discovered. However, how to compute the rotational differential-linear correlations for arbitrary output masks was left open. In this work, we partially solve this open problem by presenting an efficient algorithm for computing the (rotational) differential-linear correlation of modulo additions for arbitrary output linear masks, based on which a technique for evaluating the (rotational) differential-linear correlation of ARX ciphers is derived. We apply the technique to Alzette, Siphash, Chacha, and Speck. As a result, significantly improved (rotational) differential-linear distinguishers including deterministic ones are identified. All results of this work are practical and experimentally verified to confirm the validity of our methods. In addition, we try to explain the experimental distinguishers employed in FSE 2008, FSE 2016, and CRYPTO 2020 against Chacha. The predicted correlations are close to the experimental ones

    A new method for Searching Optimal Differential and Linear Trails in ARX Ciphers

    Get PDF
    In this paper, we propose an automatic tool to search for optimal differential and linear trails in ARX ciphers. It\u27s shown that a modulo addition can be divided into sequential small modulo additions with carry bit, which turns an ARX cipher into an S-box-like cipher. From this insight, we introduce the concepts of carry-bit-dependent difference distribution table (CDDT) and carry-bit-dependent linear approximation table (CLAT). Based on them, we give efficient methods to trace all possible output differences and linear masks of a big modulo addition, with returning their differential probabilities and linear correlations simultaneously. Then an adapted Matsui\u27s algorithm is introduced, which can find the optimal differential and linear trails in ARX ciphers. Besides, the superiority of our tool\u27s potency is also confirmed by experimental results for round-reduced versions of HIGHT and SPECK. More specifically, we find the optimal differential trails for up to 10 rounds of HIGHT, reported for the first time. We also find the optimal differential trails for 10, 12, 16, 8 and 8 rounds of SPECK32/48/64/96/128, and report the provably optimal differential trails for SPECK48 and SPECK64 for the first time. The optimal linear trails for up to 9 rounds of HIGHT are reported for the first time, and the optimal linear trails for 22, 13, 15, 9 and 9 rounds of SPECK32/48/64/96/128 are also found respectively. These results evaluate the security of HIGHT and SPECK against differential and linear cryptanalysis. Also, our tool is useful to estimate the security in the design of ARX ciphers

    Examining the practical side channel resilience of arx-boxes

    Get PDF
    Implementations of ARX ciphers are hoped to have some intrinsic side channel resilience owing to the specific choice of cipher components: modular addition (A), rotation (R) and exclusive-or (X). Previous work has contributed to this understanding by developing theory regarding the side channel resilience of components (pioneered by the early works of Prouff) as well as some more recent practical investigations by Biryukov et al. that focused on lightweight cipher constructions. We add to this work by specifically studying ARX-boxes both mathematically as well as practically. Our results show that previous works\u27 reliance on the simplistic assumption that intermediates independently leak (their Hamming weight) has led to the incorrect conclusion that the modular addition is necessarily the best target and that ARX constructions are therefore harder to attack in practice: we show that on an ARM M0, the best practical target is the exclusive or and attacks succeed with only tens of traces

    Automatic Search for Differential Trails in ARX Ciphers

    Get PDF
    We propose a tool for automatic search for differential trails in ARX ciphers. By introducing the concept of a partial difference distribution table (pDDT) we extend Matsui's algorithm, originally proposed for DES-like ciphers, to the class of ARX ciphers. To the best of our knowledge this is the first application of Matsui's algorithm to ciphers that do not have S-boxes. The tool is applied to the block ciphers TEA, XTEA, SPECK and RAIDEN. For RAIDEN we find an iterative characteristic on all 32 rounds that can be used to break the full cipher using standard differential cryptanalysis. This is the first cryptanalysis of the cipher in a non-related key setting. Differential trails on 9, 10 and 13 rounds are found for SPECK32, SPECK48 and SPECK64 respectively. The 13 round trail covers half of the total number of rounds. These are the first public results on the security analysis of SPECK. For TEA multiple full (i.e. not truncated) differential trails are reported for the first time, while for XTEA we confirm the previous best known trail reported by Hong et al. We also show closed formulas for computing the exact additive differential probabilities of the left and right shift operations. The source code of the tool is publicly available as part of a larger toolkit for the analysis of ARX at the following address: https://github.com/vesselinux/yaarx
    • …
    corecore