7,524 research outputs found

    Construction of Dependent Dirichlet Processes Based on Poisson Processes

    Get PDF
    We present a method for constructing dependent Dirichlet processes. The new approach exploits the intrinsic relationship between Dirichlet and Poisson processes in order to create a Markov chain of Dirichlet processes suitable for use as a prior over evolving mixture models. The method allows for the creation, removal, and location variation of component models over time while maintaining the property that the random measures are marginally DP distributed. Additionally, we derive a Gibbs sampling algorithm for model inference and test it on both synthetic and real data. Empirical results demonstrate that the approach is effective in estimating dynamically varying mixture models

    Inverse clustering of Gibbs Partitions via independent fragmentation and dual dependent coagulation operators

    Full text link
    Gibbs partitions of the integers generated by stable subordinators of index α∈(0,1)\alpha\in(0,1) form remarkable classes of random partitions where in principle much is known about their properties, including practically effortless obtainment of otherwise complex asymptotic results potentially relevant to applications in general combinatorial stochastic processes, random tree/graph growth models and Bayesian statistics. This class includes the well-known models based on the two-parameter Poisson-Dirichlet distribution which forms the bulk of explicit applications. This work continues efforts to provide interpretations for a larger classes of Gibbs partitions by embedding important operations within this framework. Here we address the formidable problem of extending the dual, infinite-block, coagulation/fragmentation results of Jim Pitman (1999, Annals of Probability), where in terms of coagulation they are based on independent two-parameter Poisson-Dirichlet distributions, to all such Gibbs (stable Poisson-Kingman) models. Our results create nested families of Gibbs partitions, and corresponding mass partitions, over any 0<β<α<1.0<\beta<\alpha<1. We primarily focus on the fragmentation operations, which remain independent in this setting, and corresponding remarkable calculations for Gibbs partitions derived from that operation. We also present definitive results for the dual coagulation operations, now based on our construction of dependent processes, and demonstrate its relatively simple application in terms of Mittag-Leffler and generalized gamma models. The latter demonstrates another approach to recover the duality results in Pitman (1999)

    A unifying representation for a class of dependent random measures

    Full text link
    We present a general construction for dependent random measures based on thinning Poisson processes on an augmented space. The framework is not restricted to dependent versions of a specific nonparametric model, but can be applied to all models that can be represented using completely random measures. Several existing dependent random measures can be seen as specific cases of this framework. Interesting properties of the resulting measures are derived and the efficacy of the framework is demonstrated by constructing a covariate-dependent latent feature model and topic model that obtain superior predictive performance

    Beta-Product Poisson-Dirichlet Processes

    Get PDF
    Time series data may exhibit clustering over time and, in a multiple time series context, the clustering behavior may differ across the series. This paper is motivated by the Bayesian non--parametric modeling of the dependence between the clustering structures and the distributions of different time series. We follow a Dirichlet process mixture approach and introduce a new class of multivariate dependent Dirichlet processes (DDP). The proposed DDP are represented in terms of vector of stick-breaking processes with dependent weights. The weights are beta random vectors that determine different and dependent clustering effects along the dimension of the DDP vector. We discuss some theoretical properties and provide an efficient Monte Carlo Markov Chain algorithm for posterior computation. The effectiveness of the method is illustrated with a simulation study and an application to the United States and the European Union industrial production indexes

    Dynamic density estimation with diffusive Dirichlet mixtures

    Get PDF
    We introduce a new class of nonparametric prior distributions on the space of continuously varying densities, induced by Dirichlet process mixtures which diffuse in time. These select time-indexed random functions without jumps, whose sections are continuous or discrete distributions depending on the choice of kernel. The construction exploits the widely used stick-breaking representation of the Dirichlet process and induces the time dependence by replacing the stick-breaking components with one-dimensional Wright-Fisher diffusions. These features combine appealing properties of the model, inherited from the Wright-Fisher diffusions and the Dirichlet mixture structure, with great flexibility and tractability for posterior computation. The construction can be easily extended to multi-parameter GEM marginal states, which include, for example, the Pitman--Yor process. A full inferential strategy is detailed and illustrated on simulated and real data.Comment: Published at http://dx.doi.org/10.3150/14-BEJ681 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Augment-and-Conquer Negative Binomial Processes

    Full text link
    By developing data augmentation methods unique to the negative binomial (NB) distribution, we unite seemingly disjoint count and mixture models under the NB process framework. We develop fundamental properties of the models and derive efficient Gibbs sampling inference. We show that the gamma-NB process can be reduced to the hierarchical Dirichlet process with normalization, highlighting its unique theoretical, structural and computational advantages. A variety of NB processes with distinct sharing mechanisms are constructed and applied to topic modeling, with connections to existing algorithms, showing the importance of inferring both the NB dispersion and probability parameters.Comment: Neural Information Processing Systems, NIPS 201
    • …
    corecore