491,628 research outputs found

    Simulating Ising Spin Glasses on a Quantum Computer

    Full text link
    A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus approximated efficiently. The algorithm neither suffers from critical slowing down, nor gets stuck in local minima. The algorithm can be A linear-time algorithm is presented for the construction of the Gibbs distribution of configurations in the Ising model, on a quantum computer. The algorithm is designed so that each run provides one configuration with a quantum probability equal to the corresponding thermodynamic weight. The partition function is thus approximated efficiently. The algorithm neither suffers from critical slowing down, nor gets stuck in local minima. The algorithm can be applied in any dimension, to a class of spin-glass Ising models with a finite portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field. applied in any dimension, to a class of spin-glass Ising models with a finite portion of frustrated plaquettes, diluted Ising models, and models with a magnetic field.Comment: 24 pages, 3 epsf figures, replaced with published and significantly revised version. More info available at http://www.fh.huji.ac.il/~dani/ and http://www.fiz.huji.ac.il/staff/acc/faculty/biha

    The Construction of Mirror Symmetry

    Get PDF
    The construction of mirror symmetry in the heterotic string is reviewed in the context of Calabi-Yau and Landau-Ginzburg compactifications. This framework has the virtue of providing a large subspace of the configuration space of the heterotic string, probing its structure far beyond the present reaches of solvable models. The construction proceeds in two stages: First all singularities/catastrophes which lead to ground states of the heterotic string are found. It is then shown that not all ground states described in this way are independent but that certain classes of these LG/CY string vacua can be related to other, simpler, theories via a process involving fractional transformations of the order parameters as well as orbifolding. This construction has far reaching consequences. Firstly it allows for a systematic identification of mirror pairs that appear abundantly in this class of string vacua, thereby showing that the emerging mirror symmetry is not accidental. This is important because models with mirror flipped spectra are a priori independent theories, described by distinct CY/LG models. It also shows that mirror symmetry is not restricted to the space of string vacua described by theories based on Fermat potentials (corresponding to minimal tensor models). Furthermore it shows the need for a better set of coordinates of the configuration space or else the structure of this space will remain obscure. While the space of LG vacua is {\it not} completely mirror symmetric, results described in the last part suggest that the space of Landau--Ginburg {\it orbifolds} possesses this symmetry.Comment: 58 pages, Latex file, HD-THEP-92-1

    Matrix Models and D-branes in Twistor String Theory

    Full text link
    We construct two matrix models from twistor string theory: one by dimensional reduction onto a rational curve and another one by introducing noncommutative coordinates on the fibres of the supertwistor space P^(3|4)->CP^1. We comment on the interpretation of our matrix models in terms of topological D-branes and relate them to a recently proposed string field theory. By extending one of the models, we can carry over all the ingredients of the super ADHM construction to a D-brane configuration in the supertwistor space P^(3|4). Eventually, we present the analogue picture for the (super) Nahm construction.Comment: 1+37 pages, reference added, JHEP style, published versio

    Quantum spin models with exact dimer ground states

    Full text link
    Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground state configuration of all the members of the family on a periodic chain. The ground state is two-fold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh hamiltonian with two-fold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.Comment: 10 pages, 8 figures, revtex, to appear in Phys. Rev.

    Spin Calogero models associated with Riemannian symmetric spaces of negative curvature

    Full text link
    The Hamiltonian symmetry reduction of the geodesics system on a symmetric space of negative curvature by the maximal compact subgroup of the isometry group is investigated at an arbitrary value of the momentum map. Restricting to regular elements in the configuration space, the reduction generically yields a spin Calogero model with hyperbolic interaction potentials defined by the root system of the symmetric space. These models come equipped with Lax pairs and many constants of motion, and can be integrated by the projection method. The special values of the momentum map leading to spinless Calogero models are classified under some conditions, explaining why the BCnBC_n models with two independent coupling constants are associated with SU(n+1,n)/S(U(n+1)×U(n))SU(n+1,n)/S(U(n+1)\times U(n)) as found by Olshanetsky and Perelomov. In the zero curvature limit our models reproduce rational spin Calogero models studied previously and similar models correspond to other (affine) symmetric spaces, too. The construction works at the quantized level as well.Comment: 26 pages, v3: final version with a remark added after equation (5.3
    corecore