2,844 research outputs found

    Faster ASV decomposition for orthogonal polyhedra using the Extreme Vertices Model (EVM)

    Get PDF
    The alternating sum of volumes (ASV) decomposition is a widely used technique for converting a B-Rep into a CSG model. The obtained CSG tree has convex primitives at its leaf nodes, while the contents of its internal nodes alternate between the set union and difference operators. This work first shows that the obtained CSG tree T can also be expressed as the regularized Exclusive-OR operation among all the convex primitives at the leaf nodes of T, regardless the structure and internal nodes of T. This is an important result in the case in which EVM represented orthogonal polyhedra are used because in this model the Exclusive-OR operation runs much faster than set union and difference operations. Therefore this work applies this result to EVM represented orthogonal polyhedra. It also presents experimental results that corroborate the theoretical results and includes some practical uses for the ASV decomposition of orthogonal polyhedra.Postprint (published version

    Relative Convex Hull Determination from Convex Hulls in the Plane

    Full text link
    A new algorithm for the determination of the relative convex hull in the plane of a simple polygon A with respect to another simple polygon B which contains A, is proposed. The relative convex hull is also known as geodesic convex hull, and the problem of its determination in the plane is equivalent to find the shortest curve among all Jordan curves lying in the difference set of B and A and encircling A. Algorithms solving this problem known from Computational Geometry are based on the triangulation or similar decomposition of that difference set. The algorithm presented here does not use such decomposition, but it supposes that A and B are given as ordered sequences of vertices. The algorithm is based on convex hull calculations of A and B and of smaller polygons and polylines, it produces the output list of vertices of the relative convex hull from the sequence of vertices of the convex hull of A.Comment: 15 pages, 4 figures, Conference paper published. We corrected two typing errors in Definition 2: ISI_S has to be defined based on OSO_S, and IEI_E has to be defined based on OEO_E (not just using OO). These errors appeared in the text of the original conference paper, which also contained the pseudocode of an algorithm where ISI_S and IEI_E appeared as correctly define

    Multiresolution analysis as an approach for tool path planning in NC machining

    Get PDF
    Wavelets permit multiresolution analysis of curves and surfaces. A complex curve can be decomposed using wavelet theory into lower resolution curves. The low-resolution (coarse) curves are similar to rough-cuts and high-resolution (fine) curves to finish-cuts in numerical controlled (NC) machining.;In this project, we investigate the applicability of multiresolution analysis using B-spline wavelets to NC machining of contoured 2D objects. High-resolution curves are used close to the object boundary similar to conventional offsetting, while lower resolution curves, straight lines and circular arcs are used farther away from the object boundary.;Experimental results indicate that wavelet-based multiresolution tool path planning improves machining efficiency. Tool path length is reduced, sharp corners are smoothed out thereby reducing uncut areas and larger tools can be selected for rough-cuts

    Marching Intersections: An Efficient Approach to Shape-from-Silhouette

    Get PDF
    A new shape-from-silhouette algorithm for the creation of 3D digital models is presented. The algorithm is based on the use of the Marching Intersection (MI) data structure, a volumetric scheme which allows ef\ufb01cient representation of 3D polyhedra and reduces the boolean operations between them to simple boolean operations on linear intervals. MI supports the de\ufb01nition of a direct shape-from-silhouette approach: the 3D conoids built from the silhouettes extracted from the images of the object are directly intersected to form the resulting 3D digital model. Compared to existing methods, our approach allows high quality models to be obtained in an ef\ufb01cient way. Examples on synthetic objects together with quantitative and qualitative evaluations are given

    Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data

    Get PDF
    Virtual reconstruction of historic sites, planning of restorations and attachments of new building parts, as well as forest inventory are few examples of fields that benefit from the application of 3D surveying data. Originally using 2D photo based documentation and manual distance measurements, the 3D information obtained from multi camera and laser scanning systems realizes a noticeable improvement regarding the surveying times and the amount of generated 3D information. The 3D data allows a detailed post processing and better visualization of all relevant spatial information. Yet, for the extraction of the required information from the raw scan data and for the generation of useable visual output, time-consuming, complex user-based data processing is still required, using the commercially available 3D software tools. In this context, the automatic object recognition from 3D point cloud and depth data has been discussed in many different works. The developed tools and methods however, usually only focus on a certain kind of object or the detection of learned invariant surface shapes. Although the resulting methods are applicable for certain practices of data segmentation, they are not necessarily suitable for arbitrary tasks due to the varying requirements of the different fields of research. This thesis presents a more widespread solution for automatic scene reconstruction from 3D point clouds, targeting street scenarios, specifically for the task of traffic accident scene analysis and documentation. The data, obtained by sampling the scene using a mobile scanning system is evaluated, segmented, and finally used to generate detailed 3D information of the scanned environment. To realize this aim, this work adapts and validates various existing approaches on laser scan segmentation regarding the application on accident relevant scene information, including road surfaces and markings, vehicles, walls, trees and other salient objects. The approaches are therefore evaluated regarding their suitability and limitations for the given tasks, as well as for possibilities concerning the combined application together with other procedures. The obtained knowledge is used for the development of new algorithms and procedures to allow a satisfying segmentation and reconstruction of the scene, corresponding to the available sampling densities and precisions. Besides the segmentation of the point cloud data, this thesis presents different visualization and reconstruction methods to achieve a wider range of possible applications of the developed system for data export and utilization in different third party software tools

    Robust surface modelling of visual hull from multiple silhouettes

    Get PDF
    Reconstructing depth information from images is one of the actively researched themes in computer vision and its application involves most vision research areas from object recognition to realistic visualisation. Amongst other useful vision-based reconstruction techniques, this thesis extensively investigates the visual hull (VH) concept for volume approximation and its robust surface modelling when various views of an object are available. Assuming that multiple images are captured from a circular motion, projection matrices are generally parameterised in terms of a rotation angle from a reference position in order to facilitate the multi-camera calibration. However, this assumption is often violated in practice, i.e., a pure rotation in a planar motion with accurate rotation angle is hardly realisable. To address this problem, at first, this thesis proposes a calibration method associated with the approximate circular motion. With these modified projection matrices, a resulting VH is represented by a hierarchical tree structure of voxels from which surfaces are extracted by the Marching cubes (MC) algorithm. However, the surfaces may have unexpected artefacts caused by a coarser volume reconstruction, the topological ambiguity of the MC algorithm, and imperfect image processing or calibration result. To avoid this sensitivity, this thesis proposes a robust surface construction algorithm which initially classifies local convex regions from imperfect MC vertices and then aggregates local surfaces constructed by the 3D convex hull algorithm. Furthermore, this thesis also explores the use of wide baseline images to refine a coarse VH using an affine invariant region descriptor. This improves the quality of VH when a small number of initial views is given. In conclusion, the proposed methods achieve a 3D model with enhanced accuracy. Also, robust surface modelling is retained when silhouette images are degraded by practical noise
    • …
    corecore