53,450 research outputs found

    Smart cool mortar for passive cooling of historical and existing buildings: experimental analysis and dynamic simulation

    Get PDF
    In order to mitigate Urban Heat Island Effect and global warming, both governments and scientific community are working to reduce energy consumptions. In particular, the construction sector has a high potential in reducing energy demand, by means of both active and passive solutions. The European building stock is mainly composed by existing buildings as well as historical ones, which happens to be the less energy efficient ones. Moreover, retrofit operations are more complex on historical buildings, due to strict regulations for the preservation of such historical and cultural heritage. Considering this challenge, in this work we described and in lab analyzed possible passive solutions specifically designed for historical and existing buildings. In particular, we developed innovative cool colored mortars and tested them in lab, as well as investigated cool colored mortars, cool clay tiles and cool natural gravels performance when applied as envelope and roof elements, by means of dynamic simulation

    From Monge-Ampere equations to envelopes and geodesic rays in the zero temperature limit

    Full text link
    Let X be a compact complex manifold equipped with a smooth (but not necessarily positive) closed form theta of one-one type. By a well-known envelope construction this data determines a canonical theta-psh function u which is not two times differentiable, in general. We introduce a family of regularizations of u, parametrized by a positive number beta, defined as the smooth solutions of complex Monge-Ampere equations of Aubin-Yau type. It is shown that, as beta tends to infinity, the regularizations converge to the envelope u in the strongest possible Holder sense. A generalization of this result to the case of a nef and big cohomology class is also obtained. As a consequence new PDE proofs are obtained for the regularity results for envelopes in [14] (which, however, are weaker than the results in [14] in the case of a non-nef big class). Applications to the regularization problem for quasi-psh functions and geodesic rays in the closure of the space of Kahler metrics are given. As briefly explained there is a statistical mechanical motivation for this regularization procedure, where beta appears as the inverse temperature. This point of view also leads to an interpretation of the regularizations as transcendental Bergman metrics.Comment: 28 pages. Version 2: 29 pages. Improved exposition, references updated. Version 3: 31 pages. A direct proof of the bound on the Monge-Amp\`ere mass of the envelope for a general big class has been included and Theorem 2.2 has been generalized to measures satisfying a Bernstein-Markov propert

    Building in Historical Areas: Identity Values and Energy Performance of Innovative Massive Stone Envelopes with Reference to Traditional Building Solutions

    Get PDF
    The intrinsic nature of local rocks shaped the features of built heritage in historical centers. The resulting building culture is part of the cultural heritage itself, and must be considered when building in such areas, while it is essential to solve the issues related to traditional constructions’ weaknesses. Nonetheless, the potentialities of massive stone envelopes, particularly the importance of thermal inertia, have contributed to redefining the language of contemporary architectural culture. Nowadays, although the trend of employing thin stone cladding panels is prevalent, thick stone envelopes are gaining a renewed importance. Previous literature demonstrated that mixed building technologies or massive stone envelopes coupled with load-bearing framed structures are able to meet comfort and safety requirements and to guarantee the integration of new constructions in the consolidated urban landscape, avoiding historicist approaches. This research, through the analysis of case studies, aims to describe innovative building solutions developed by contemporary architectural culture, comparing them with traditional stone masonry walls. Moreover, thermal energy performance of such building solutions is assessed through dynamic yearly simulations. Results show that these solutions are technically and architecturally suitable to build in historical centers, because they can express urban cultural identity and guarantee good energy performance and users’ comfort
    • …
    corecore