503 research outputs found

    Novel approach to constructing static heuristic malware detection mechanism

    Get PDF
    To ensure the protection of information processed by computer systems is currently the most important task in the construction and operation of the automated systems. The paper presents the application justification of a new set of features distinguished at the stage of the static analysis of the executable files to address the problem of malicious code detection. In the course of study, following problems were solved: development of the executable files classifier in the absence of a priori data concerning their functionality; designing class models of uninfected files and malware during the learning process; development of malicious code detection procedure using the neural networks mathematical apparatus and decision tree composition relating to the set of features specified on the basis of the executable files static analysis. The paper also describes the functional model of malware detection system using the executable files static analysis. The conclusion contains the results of experimental evaluation of the developed detection mechanism efficiency on the basis of neural networks and decision tree composition. The obtained data confirmed the hypothesis about the possibility of constructing the heuristic malware analyzer on the basis of features distinguished during the static analysis of the executable files. However, the approach based on the decision tree composition enables to obtain a significantly lower false negative rate probability with the specified initial data and classifier parameter values relating to neural networks

    Effective methods to detect metamorphic malware: A systematic review

    Get PDF
    The succeeding code for metamorphic Malware is routinely rewritten to remain stealthy and undetected within infected environments. This characteristic is maintained by means of encryption and decryption methods, obfuscation through garbage code insertion, code transformation and registry modification which makes detection very challenging. The main objective of this study is to contribute an evidence-based narrative demonstrating the effectiveness of recent proposals. Sixteen primary studies were included in this analysis based on a pre-defined protocol. The majority of the reviewed detection methods used Opcode, Control Flow Graph (CFG) and API Call Graph. Key challenges facing the detection of metamorphic malware include code obfuscation, lack of dynamic capabilities to analyse code and application difficulty. Methods were further analysed on the basis of their approach, limitation, empirical evidence and key parameters such as dataset, Detection Rate (DR) and False Positive Rate (FPR)

    Metamorphic Code Generation from LLVM IR Bytecode

    Get PDF
    Metamorphic software changes its internal structure across generations with its functionality remaining unchanged. Metamorphism has been employed by malware writers as a means of evading signature detection and other advanced detection strate- gies. However, code morphing also has potential security benefits, since it increases the “genetic diversity” of software. In this research, we have created a metamorphic code generator within the LLVM compiler framework. LLVM is a three-phase compiler that supports multiple source languages and target architectures. It uses a common intermediate representation (IR) bytecode in its optimizer. Consequently, any supported high-level programming language can be transformed to this IR bytecode as part of the LLVM compila- tion process. Our metamorphic generator functions at the IR bytecode level, which provides many advantages over previously developed metamorphic generators. The morphing techniques that we employ include dead code insertion—where the dead code is actually executed within the morphed code—and subroutine permutation. We have tested the effectiveness of our code morphing using hidden Markov model analysis

    GUIDE FOR THE COLLECTION OF INSTRUSION DATA FOR MALWARE ANALYSIS AND DETECTION IN THE BUILD AND DEPLOYMENT PHASE

    Get PDF
    During the COVID-19 pandemic, when most businesses were not equipped for remote work and cloud computing, we saw a significant surge in ransomware attacks. This study aims to utilize machine learning and artificial intelligence to prevent known and unknown malware threats from being exploited by threat actors when developers build and deploy applications to the cloud. This study demonstrated an experimental quantitative research design using Aqua. The experiment\u27s sample is a Docker image. Aqua checked the Docker image for malware, sensitive data, Critical/High vulnerabilities, misconfiguration, and OSS license. The data collection approach is experimental. Our analysis of the experiment demonstrated how unapproved images were prevented from running anywhere in our environment based on known vulnerabilities, embedded secrets, OSS licensing, dynamic threat analysis, and secure image configuration. In addition to the experiment, the forensic data collected in the build and deployment phase are exploitable vulnerability, Critical/High Vulnerability Score, Misconfiguration, Sensitive Data, and Root User (Super User). Since Aqua generates a detailed audit record for every event during risk assessment and runtime, we viewed two events on the Audit page for our experiment. One of the events caused an alert due to two failed controls (Vulnerability Score, Super User), and the other was a successful event meaning that the image is secure to deploy in the production environment. The primary finding for our study is the forensic data associated with the two events on the Audit page in Aqua. In addition, Aqua validated our security controls and runtime policies based on the forensic data with both events on the Audit page. Finally, the study’s conclusions will mitigate the likelihood that organizations will fall victim to ransomware by mitigating and preventing the total damage caused by a malware attack

    Behaviour-based Virus Analysis and Detection

    Get PDF
    Every day, the growing number of viruses causes major damage to computer systems, which many antivirus products have been developed to protect. Regrettably, existing antivirus products do not provide a full solution to the problems associated with viruses. One of the main reasons for this is that these products typically use signature-based detection, so that the rapid growth in the number of viruses means that many signatures have to be added to their signature databases each day. These signatures then have to be stored in the computer system, where they consume increasing memory space. Moreover, the large database will also affect the speed of searching for signatures, and, hence, affect the performance of the system. As the number of viruses continues to grow, ever more space will be needed in the future. There is thus an urgent need for a novel and robust detection technique. One of the most encouraging recent developments in virus research is the use of formulae, which provides alternatives to classic virus detection methods. The proposed research uses temporal logic and behaviour-based detection to detect viruses. Interval Temporal Logic (ITL) will be used to generate virus specifications, properties and formulae based on the analysis of the behaviour of computer viruses, in order to detect them. Tempura, which is the executable subset of ITL, will be used to check whether a good or bad behaviour occurs with the help of ITL description and system traces. The process will also use AnaTempura, an integrated workbench tool for ITL that supports our system specifications. AnaTempura will offer validation and verification of the ITL specifications and provide runtime testing of these specifications

    Detecting Malicious Software By Dynamicexecution

    Get PDF
    Traditional way to detect malicious software is based on signature matching. However, signature matching only detects known malicious software. In order to detect unknown malicious software, it is necessary to analyze the software for its impact on the system when the software is executed. In one approach, the software code can be statically analyzed for any malicious patterns. Another approach is to execute the program and determine the nature of the program dynamically. Since the execution of malicious code may have negative impact on the system, the code must be executed in a controlled environment. For that purpose, we have developed a sandbox to protect the system. Potential malicious behavior is intercepted by hooking Win32 system calls. Using the developed sandbox, we detect unknown virus using dynamic instruction sequences mining techniques. By collecting runtime instruction sequences in basic blocks, we extract instruction sequence patterns based on instruction associations. We build classification models with these patterns. By applying this classification model, we predict the nature of an unknown program. We compare our approach with several other approaches such as simple heuristics, NGram and static instruction sequences. We have also developed a method to identify a family of malicious software utilizing the system call trace. We construct a structural system call diagram from captured dynamic system call traces. We generate smart system call signature using profile hidden Markov model (PHMM) based on modularized system call block. Smart system call signature weakly identifies a family of malicious software

    Studying a Virtual Testbed for Unverified Data

    Get PDF
    It is difficult to fully know the effects a piece of software will have on your computer, particularly when the software is distributed by an unknown source. The research in this paper focuses on malware detection, virtualization, and sandbox/honeypot techniques with the goal of improving the security of installing useful, but unverifiable, software. With a combination of these techniques, it should be possible to install software in an environment where it cannot harm a machine, but can be tested to determine its safety. Testing for malware, performance, network connectivity, memory usage, and interoperability can be accomplished without allowing the program to access the base operating system of a machine. After the full effects of the software are understood and it is determined to be safe, it could then be run from, and given access to, the base operating system. This thesis investigates the feasibility of creating a system to verify the security of unknown software while ensuring it will have no negative impact on the host machine

    A Novel Malware Target Recognition Architecture for Enhanced Cyberspace Situation Awareness

    Get PDF
    The rapid transition of critical business processes to computer networks potentially exposes organizations to digital theft or corruption by advanced competitors. One tool used for these tasks is malware, because it circumvents legitimate authentication mechanisms. Malware is an epidemic problem for organizations of all types. This research proposes and evaluates a novel Malware Target Recognition (MaTR) architecture for malware detection and identification of propagation methods and payloads to enhance situation awareness in tactical scenarios using non-instruction-based, static heuristic features. MaTR achieves a 99.92% detection accuracy on known malware with false positive and false negative rates of 8.73e-4 and 8.03e-4 respectively. MaTR outperforms leading static heuristic methods with a statistically significant 1% improvement in detection accuracy and 85% and 94% reductions in false positive and false negative rates respectively. Against a set of publicly unknown malware, MaTR detection accuracy is 98.56%, a 65% performance improvement over the combined effectiveness of three commercial antivirus products
    corecore