1,610 research outputs found

    Combining Multiple Clusterings via Crowd Agreement Estimation and Multi-Granularity Link Analysis

    Full text link
    The clustering ensemble technique aims to combine multiple clusterings into a probably better and more robust clustering and has been receiving an increasing attention in recent years. There are mainly two aspects of limitations in the existing clustering ensemble approaches. Firstly, many approaches lack the ability to weight the base clusterings without access to the original data and can be affected significantly by the low-quality, or even ill clusterings. Secondly, they generally focus on the instance level or cluster level in the ensemble system and fail to integrate multi-granularity cues into a unified model. To address these two limitations, this paper proposes to solve the clustering ensemble problem via crowd agreement estimation and multi-granularity link analysis. We present the normalized crowd agreement index (NCAI) to evaluate the quality of base clusterings in an unsupervised manner and thus weight the base clusterings in accordance with their clustering validity. To explore the relationship between clusters, the source aware connected triple (SACT) similarity is introduced with regard to their common neighbors and the source reliability. Based on NCAI and multi-granularity information collected among base clusterings, clusters, and data instances, we further propose two novel consensus functions, termed weighted evidence accumulation clustering (WEAC) and graph partitioning with multi-granularity link analysis (GP-MGLA) respectively. The experiments are conducted on eight real-world datasets. The experimental results demonstrate the effectiveness and robustness of the proposed methods.Comment: The MATLAB source code of this work is available at: https://www.researchgate.net/publication/28197031

    GumDrop at the DISRPT2019 Shared Task: A Model Stacking Approach to Discourse Unit Segmentation and Connective Detection

    Full text link
    In this paper we present GumDrop, Georgetown University's entry at the DISRPT 2019 Shared Task on automatic discourse unit segmentation and connective detection. Our approach relies on model stacking, creating a heterogeneous ensemble of classifiers, which feed into a metalearner for each final task. The system encompasses three trainable component stacks: one for sentence splitting, one for discourse unit segmentation and one for connective detection. The flexibility of each ensemble allows the system to generalize well to datasets of different sizes and with varying levels of homogeneity.Comment: Proceedings of Discourse Relation Parsing and Treebanking (DISRPT2019

    Lesion detection and Grading of Diabetic Retinopathy via Two-stages Deep Convolutional Neural Networks

    Full text link
    We propose an automatic diabetic retinopathy (DR) analysis algorithm based on two-stages deep convolutional neural networks (DCNN). Compared to existing DCNN-based DR detection methods, the proposed algorithm have the following advantages: (1) Our method can point out the location and type of lesions in the fundus images, as well as giving the severity grades of DR. Moreover, since retina lesions and DR severity appear with different scales in fundus images, the integration of both local and global networks learn more complete and specific features for DR analysis. (2) By introducing imbalanced weighting map, more attentions will be given to lesion patches for DR grading, which significantly improve the performance of the proposed algorithm. In this study, we label 12,206 lesion patches and re-annotate the DR grades of 23,595 fundus images from Kaggle competition dataset. Under the guidance of clinical ophthalmologists, the experimental results show that our local lesion detection net achieve comparable performance with trained human observers, and the proposed imbalanced weighted scheme also be proved to significantly improve the capability of our DCNN-based DR grading algorithm

    PATTERN RECOGNITION IN CLASS IMBALANCED DATASETS

    Get PDF
    Class imbalanced datasets constitute a significant portion of the machine learning problems of interest, where recog­nizing the ‘rare class’ is the primary objective for most applications. Traditional linear machine learning algorithms are often not effective in recognizing the rare class. In this research work, a specifically optimized feed-forward artificial neural network (ANN) is proposed and developed to train from moderate to highly imbalanced datasets. The proposed methodology deals with the difficulty in classification task in multiple stages—by optimizing the training dataset, modifying kernel function to generate the gram matrix and optimizing the NN structure. First, the training dataset is extracted from the available sample set through an iterative process of selective under-sampling. Then, the proposed artificial NN comprises of a kernel function optimizer to specifically enhance class boundaries for imbalanced datasets by conformally transforming the kernel functions. Finally, a single hidden layer weighted neural network structure is proposed to train models from the imbalanced dataset. The proposed NN architecture is derived to effectively classify any binary dataset with even very high imbalance ratio with appropriate parameter tuning and sufficient number of processing elements. Effectiveness of the proposed method is tested on accuracy based performance metrics, achieving close to and above 90%, with several imbalanced datasets of generic nature and compared with state of the art methods. The proposed model is also used for classification of a 25GB computed tomographic colonography database to test its applicability for big data. Also the effectiveness of under-sampling, kernel optimization for training of the NN model from the modified kernel gram matrix representing the imbalanced data distribution is analyzed experimentally. Computation time analysis shows the feasibility of the system for practical purposes. This report is concluded with discussion of prospect of the developed model and suggestion for further development works in this direction

    An advance extended binomial GLMBoost ensemble method with synthetic minority over-sampling technique for handling imbalanced datasets

    Get PDF
    Classification is an important activity in a variety of domains. Class imbalance problem have reduced the performance of the traditional classification approaches. An imbalance problem arises when mismatched class distributions are discovered among the instances of class of classification datasets. An advance extended binomial GLMBoost (EBGLMBoost) coupled with synthetic minority over-sampling technique (SMOTE) technique is the proposed model in the study to manage imbalance issues. The SMOTE is used to solve the proposed model, ensuring that the target variable's distribution is balanced, whereas the GLMBoost ensemble techniques are built to deal with imbalanced datasets. For the entire experiment, twenty different datasets are used, and support vector machine (SVM), Nu-SVM, bagging, and AdaBoost classification algorithms are used to compare with the suggested method. The model's sensitivity, specificity, geometric mean (G-mean), precision, recall, and F-measure resulted in percentages for training and testing datasets are 99.37, 66.95, 80.81, 99.21, 99.37, 99.29 and 98.61, 54.78, 69.88, 98.77, 96.61, 98.68, respectively. With the help of the Wilcoxon test, it is determined that the proposed technique performed well on unbalanced data. Finally, the proposed solutions are capable of efficiently dealing with the problem of class imbalance
    • …
    corecore