186 research outputs found

    Differential Privacy - A Balancing Act

    Get PDF
    Data privacy is an ever important aspect of data analyses. Historically, a plethora of privacy techniques have been introduced to protect data, but few have stood the test of time. From investigating the overlap between big data research, and security and privacy research, I have found that differential privacy presents itself as a promising defender of data privacy.Differential privacy is a rigorous, mathematical notion of privacy. Nevertheless, privacy comes at a cost. In order to achieve differential privacy, we need to introduce some form of inaccuracy (i.e. error) to our analyses. Hence, practitioners need to engage in a balancing act between accuracy and privacy when adopting differential privacy. As a consequence, understanding this accuracy/privacy trade-off is vital to being able to use differential privacy in real data analyses.In this thesis, I aim to bridge the gap between differential privacy in theory, and differential privacy in practice. Most notably, I aim to convey a better understanding of the accuracy/privacy trade-off, by 1) implementing tools to tweak accuracy/privacy in a real use case, 2) presenting a methodology for empirically predicting error, and 3) systematizing and analyzing known accuracy improvement techniques for differentially private algorithms. Additionally, I also put differential privacy into context by investigating how it can be applied in the automotive domain. Using the automotive domain as an example, I introduce the main challenges that constitutes the balancing act, and provide advice for moving forward

    Accountable infrastructure and its impact on internet security and privacy

    Get PDF
    The Internet infrastructure relies on the correct functioning of the basic underlying protocols, which were designed for functionality. Security and privacy have been added post hoc, mostly by applying cryptographic means to different layers of communication. In the absence of accountability, as a fundamental property, the Internet infrastructure does not have a built-in ability to associate an action with the responsible entity, neither to detect or prevent misbehavior. In this thesis, we study accountability from a few different perspectives. First, we study the need of having accountability in anonymous communication networks as a mechanism that provides repudiation for the proxy nodes by tracing back selected outbound traffic in a provable manner. Second, we design a framework that provides a foundation to support the enforcement of the right to be forgotten law in a scalable and automated manner. The framework provides a technical mean for the users to prove their eligibility for content removal from the search results. Third, we analyze the Internet infrastructure determining potential security risks and threats imposed by dependencies among the entities on the Internet. Finally, we evaluate the feasibility of using hop count filtering as a mechanism for mitigating Distributed Reflective Denial-of-Service attacks, and conceptually show that it cannot work to prevent these attacks.Die Internet-Infrastrutur stützt sich auf die korrekte Ausführung zugrundeliegender Protokolle, welche mit Fokus auf Funktionalität entwickelt wurden. Sicherheit und Datenschutz wurden nachträglich hinzugefügt, hauptsächlich durch die Anwendung kryptografischer Methoden in verschiedenen Schichten des Protokollstacks. Fehlende Zurechenbarkeit, eine fundamentale Eigenschaft Handlungen mit deren Verantwortlichen in Verbindung zu bringen, verhindert jedoch, Fehlverhalten zu erkennen und zu unterbinden. Diese Dissertation betrachtet die Zurechenbarkeit im Internet aus verschiedenen Blickwinkeln. Zuerst untersuchen wir die Notwendigkeit für Zurechenbarkeit in anonymisierten Kommunikationsnetzen um es Proxyknoten zu erlauben Fehlverhalten beweisbar auf den eigentlichen Verursacher zurückzuverfolgen. Zweitens entwerfen wir ein Framework, das die skalierbare und automatisierte Umsetzung des Rechts auf Vergessenwerden unterstützt. Unser Framework bietet Benutzern die technische Möglichkeit, ihre Berechtigung für die Entfernung von Suchergebnissen nachzuweisen. Drittens analysieren wir die Internet-Infrastruktur, um mögliche Sicherheitsrisiken und Bedrohungen aufgrund von Abhängigkeiten zwischen den verschiedenen beteiligten Entitäten zu bestimmen. Letztlich evaluieren wir die Umsetzbarkeit von Hop Count Filtering als ein Instrument DRDoS Angriffe abzuschwächen und wir zeigen, dass dieses Instrument diese Art der Angriffe konzeptionell nicht verhindern kann

    Steganographic file system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Kleptography and steganography in blockchains

    Get PDF
    Despite its vast proliferation, the blockchain technology is still evolving, and witnesses continuous technical innovations to address its numerous unresolved issues. An example of these issues is the excessive electrical power consumed by some consensus protocols. Besides, although various media reports have highlighted the existence of objectionable content in blockchains, this topic has not received sufficient research. Hence, this work investigates the threat and deterrence of arbitrary-content insertion in public blockchains, which poses a legal, moral, and technical challenge. In particular, the overall aim of this work is to thoroughly study the risk of manipulating the implementation of randomized cryptographic primitives in public blockchains to mount kleptographic attacks, establish steganographic communication, and store arbitrary content. As part of our study, we present three new kleptographic attacks on two of the most commonly used digital signatures: ring signature and ECDSA. We also demonstrate our kleptographic attacks on two real cryptocurrencies: Bytecoin and Monero. Moreover, we illustrate the plausibility of hijacking public blockchains to establish steganographic channels. Particularly, we design, implement, and evaluate the first blockchain-based broadcast communication tool on top of a real-world cryptocurrency. Furthermore, we explain the detrimental consequences of kleptography and steganography on the users and the future of the blockchain technology. Namely, we show that kleptography can be used to surreptitiously steal the users' secret signing keys, which are the most valuable and guarded secret in public blockchains. After losing their keys, users of cryptocurrencies will inevitably lose their funds. In addition, we clarify that steganography can be used to establish subliminal communication and secretly store arbitrary content in public blockchains, which turns them into cheap cyberlockers. Consequently, the participation in such blockchains, which are known to store unethical content, can be criminalized, hindering the future adoption of blockchains. After discussing the adverse effects of kleptographic and steganographic attacks on blockchains, we survey all of the existing techniques that can defend against these attacks. Finally, due to the shortcomings of the available techniques, we propose four countermeasures that ensure kleptography and steganography-resistant public blockchains. Our countermeasures include two new cryptographic primitives and a generic steganographyresistant blockchain framework (SRBF). This framework presents a universal solution that deters steganography and practically achieves the right to be forgotten (RtbF) in blockchains, which represents a regulatory challenge for current immutable blockchains

    Constructing plausible innocuous pseudo queries to protect user query intention

    Full text link
    © 2015 Elsevier Inc. All rights reserved. Users of web search engines are increasingly worried that their query activities may expose what topics they are interested in, and in turn, compromise their privacy. It would be desirable for a search engine to protect the true query intention for users without compromising the precision-recall performance. In this paper, we propose a client-based approach to address this problem. The basic idea is to issue plausible but innocuous pseudo queries together with a user query, so as to mask the user intention. First, we present a privacy model which formulates plausibility and innocuousness, and then the requirements which should be satisfied to ensure that the user intention is protected against a search engine effectively. Second, based on a semantic reference space derived from Wikipedia, we propose an approach to construct a group of pseudo queries that exhibit similar characteristic distribution as a given user query, but point to irrelevant topics, so as to meet the security requirements defined by the privacy model. Finally, we conduct extensive experimental evaluations to demonstrate the practicality and effectiveness of our approach

    Stealth Key Exchange and Confined Access to the Record Protocol Data in TLS 1.3

    Get PDF
    We show how to embed a covert key exchange sub protocol within a regular TLS 1.3 execution, generating a stealth key in addition to the regular session keys. The idea, which has appeared in the literature before, is to use the exchanged nonces to transport another key value. Our contribution is to give a rigorous model and analysis of the security of such embedded key exchanges, requiring that the stealth key remains secure even if the regular key is under adversarial control. Specifically for our stealth version of the TLS 1.3 protocol we show that this extra key is secure in this setting under the common assumptions about the TLS protocol. As an application of stealth key exchange we discuss sanitizable channel protocols, where a designated party can partly access and modify payload data in a channel protocol. This may be, for instance, an intrusion detection system monitoring the incoming traffic for malicious content and putting suspicious parts in quarantine. The noteworthy feature, inherited from the stealth key exchange part, is that the sender and receiver can use the extra key to still communicate securely and covertly within the sanitizable channel, e.g., by pre-encrypting confidential parts and making only dedicated parts available to the sanitizer. We discuss how such sanitizable channels can be implemented with authenticated encryption schemes like GCM or ChaChaPoly. In combination with our stealth key exchange protocol, we thus derive a full-fledged sanitizable connection protocol, including key establishment, which perfectly complies with regular TLS 1.3 traffic on the network level. We also assess the potential effectiveness of the approach for the intrusion detection system Snort

    Foundations of secure computation

    Get PDF
    Issued as Workshop proceedings and Final report, Project no. G-36-61

    Foundations of decentralised privacy

    Get PDF
    Distributed ledgers, and specifically blockchains, have been an immensely popular investment in the past few years. The heart of their popularity is due to their novel approach toward financial assets: They replace the need for central, trusted institutions such as banks with cryptography, ensuring no one entity has authority over the system. In the light of record distrust in many established institutions, this is attractive both as a method to combat institutional control and to demonstrate transparency. What better way to manage distrust than to embrace it? While distributed ledgers have achieved great things in removing the need to trust institutions, most notably the creation of fully decentralised assets, their practice falls short of the idealistic goals often seen in the field. One of their greatest shortcomings lies in a fundamental conflict with privacy. Distributed ledgers and surrounding technologies rely heavily on the transparent replication of data, a practice which makes keeping anything hidden very difficult. This thesis makes use of the powerful cryptography of succinct non-interactive zero-knowledge proofs to provide a foundation for re-establishing privacy in the decentralised setting. It discusses the security assumptions and requirements of succinct zero-knowledge proofs atlength, establishing a new framework for handling security proofs about them, and reducing the setup required to that already present in commonly used distributed ledgers. It further demonstrates the possibility of privacy-preserving proof-of-stake, removing the need for costly proofs-of-work for a privacy-focused distributed ledger. Finally, it lays out a solid foundation for a smart contract system supporting privacy – putting into the hands of contract authors the tools necessary to innovate and introduce new privacy features

    Aggregating privatized medical data for secure querying applications

    Full text link
     This thesis analyses and examines the challenges of aggregation of sensitive data and data querying on aggregated data at cloud server. This thesis also delineates applications of aggregation of sensitive medical data in several application scenarios, and tests privatization techniques to assist in improving the strength of privacy and utility

    The Trouble With Big Data

    Get PDF
    This book is available as open access through the Bloomsbury Open programme and is available on www.bloomsburycollections.com. It is funded by Trinity College Dublin, DARIAH-EU and the European Commission. This book explores the challenges society faces with big data, through the lens of culture rather than social, political or economic trends, as demonstrated in the words we use, the values that underpin our interactions, and the biases and assumptions that drive us. Focusing on areas such as data and language, data and sensemaking, data and power, data and invisibility, and big data aggregation, it demonstrates that humanities research, focussing on cultural rather than social, political or economic frames of reference for viewing technology, resists mass datafication for a reason, and that those very reasons can be instructive for the critical observation of big data research and innovation
    corecore