278 research outputs found

    The construction of good lattice rules and polynomial lattice rules

    Full text link
    A comprehensive overview of lattice rules and polynomial lattice rules is given for function spaces based on ℓp\ell_p semi-norms. Good lattice rules and polynomial lattice rules are defined as those obtaining worst-case errors bounded by the optimal rate of convergence for the function space. The focus is on algebraic rates of convergence O(N−α+ϵ)O(N^{-\alpha+\epsilon}) for α≥1\alpha \ge 1 and any ϵ>0\epsilon > 0, where α\alpha is the decay of a series representation of the integrand function. The dependence of the implied constant on the dimension can be controlled by weights which determine the influence of the different dimensions. Different types of weights are discussed. The construction of good lattice rules, and polynomial lattice rules, can be done using the same method for all 1<p≤∞1 < p \le \infty; but the case p=1p=1 is special from the construction point of view. For 1<p≤∞1 < p \le \infty the component-by-component construction and its fast algorithm for different weighted function spaces is then discussed

    09391 Abstracts Collection -- Algorithms and Complexity for Continuous Problems

    Get PDF
    From 20.09.09 to 25.09.09, the Dagstuhl Seminar 09391 Algorithms and Complexity for Continuous Problems was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    06391 Abstracts Collection -- Algorithms and Complexity for Continuous Problems

    Get PDF
    From 24.09.06 to 29.09.06, the Dagstuhl Seminar 06391 ``Algorithms and Complexity for Continuous Problems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Strang splitting in combination with rank-11 and rank-rr lattices for the time-dependent Schr\"odinger equation

    Full text link
    We approximate the solution for the time dependent Schr\"odinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than 9/29/2. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-11 lattice points, the solution can be efficiently computed (and further time stepped) using only 11-dimensional Fast Fourier Transforms.Comment: Modified. 40pages, 5 figures. The proof of Lemma 1 is updated after the paper is publishe

    Efficient multivariate approximation with transformed rank-1 lattices

    Get PDF
    We study the approximation of functions defined on different domains by trigonometric and transformed trigonometric functions. We investigate which of the many results known from the approximation theory on the d-dimensional torus can be transfered to other domains. We define invertible parameterized transformations and prove conditions under which functions from a weighted Sobolev space can be transformed into functions defined on the torus, that still have a certain degree of Sobolev smoothness and for which we know worst-case upper error bounds. By reverting the initial change of variables we transfer the fast algorithms based on rank-1 lattices used to approximate functions on the torus efficiently over to other domains and obtain adapted FFT algorithms.:1 Introduction 2 Preliminaries and notations 3 Fourier approximation on the torus 4 Torus-to-R d transformation mappings 5 Torus-to-cube transformation mappings 6 Conclusion Alphabetical IndexWir betrachten die Approximation von Funktionen, die auf verschiedenen Gebieten definiert sind, mittels trigonometrischer und transformierter trigonometrischer Funktionen. Wir untersuchen, welche bisherigen Ergebnisse für die Approximation von Funktionen, die auf einem d-dimensionalen Torus definiert wurden, auf andere Definitionsgebiete übertragen werden können. Dazu definieren wir parametrisierte Transformationsabbildungen und beweisen Bedingungen, bei denen Funktionen aus einem gewichteten Sobolevraum in Funktionen, die auf dem Torus definiert sind, transformiert werden können, die dabei einen gewissen Grad an Sobolevglattheit behalten und für die obere Schranken der Approximationsfehler bewiesen wurden. Durch Umkehrung der ursprünglichen Koordinatentransformation übertragen wir die schnellen Algorithmen, die Rang-1 Gitter Methoden verwenden um Funktionen auf dem Torus effizient zu approximieren, auf andere Definitionsgebiete und erhalten adaptierte FFT Algorithmen.:1 Introduction 2 Preliminaries and notations 3 Fourier approximation on the torus 4 Torus-to-R d transformation mappings 5 Torus-to-cube transformation mappings 6 Conclusion Alphabetical Inde
    • …
    corecore