27 research outputs found

    Pooling spaces associated with finite geometry

    Get PDF
    AbstractMotivated by the works of Ngo and Du [H. Ngo, D. Du, A survey on combinatorial group testing algorithms with applications to DNA library screening, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 55 (2000) 171–182], the notion of pooling spaces was introduced [T. Huang, C. Weng, Pooling spaces and non-adaptive pooling designs, Discrete Mathematics 282 (2004) 163–169] for a systematic way of constructing pooling designs; note that geometric lattices are among pooling spaces. This paper attempts to draw possible connections from finite geometry and distance regular graphs to pooling spaces: including the projective spaces, the affine spaces, the attenuated spaces, and a few families of geometric lattices associated with the orbits of subspaces under finite classical groups, and associated with d-bounded distance-regular graphs

    Applied Harmonic Analysis and Data Processing

    Get PDF
    Massive data sets have their own architecture. Each data source has an inherent structure, which we should attempt to detect in order to utilize it for applications, such as denoising, clustering, anomaly detection, knowledge extraction, or classification. Harmonic analysis revolves around creating new structures for decomposition, rearrangement and reconstruction of operators and functions—in other words inventing and exploring new architectures for information and inference. Two previous very successful workshops on applied harmonic analysis and sparse approximation have taken place in 2012 and in 2015. This workshop was the an evolution and continuation of these workshops and intended to bring together world leading experts in applied harmonic analysis, data analysis, optimization, statistics, and machine learning to report on recent developments, and to foster new developments and collaborations

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Quantum Codes and Multiparty Computation:A Coding Theoretic Approach

    Get PDF

    New methods in quantum error correction and fault-tolerant quantum computing

    Get PDF
    Quantum computers have the potential to solve several interesting problems in polynomial time for which no polynomial time classical algorithms have been found. However, one of the major challenges in building quantum devices is that quantum systems are very sensitive to noise arising from undesired interactions with the environment. Noise can lead to errors which can corrupt the results of the computation. Quantum error correction is one way to mitigate the effects of noise arising in quantum devices. With a plethora of quantum error correcting codes that can be used in various settings, one of the main challenges of quantum error correction is understanding how well various codes perform under more realistic noise models that can be observed in experiments. This thesis proposes a new decoding algorithm which can optimize threshold values of error correcting codes under different noise models. The algorithm can be applied to any Markovian noise model. Further, it is shown that for certain noise models, logical Clifford corrections can further improve a code's threshold value if the code obeys certain symmetries. Since gates and measurements cannot in general be performed with perfect precision, the operations required to perform quantum error correction can introduce more errors into the system thus negating the benefits of error correction. Fault-tolerant quantum computing is a way to perform quantum error correction with imperfect operations while retaining the ability to suppress errors as long as the noise is below a code's threshold. One of the main challenges in performing fault-tolerant error correction is the high resource requirements that are needed to obtain very low logical noise rates. With the use of flag qubits, this thesis develops new fault-tolerant error correction protocols that are applicable to arbitrary distance codes. Various code families are shown to satisfy the requirements of flag fault-tolerant error correction. We also provide circuits using a constant number of qubits for these codes. It is shown that the proposed flag fault-tolerant method uses fewer qubits than previous fault-tolerant error correction protocols. It is often the case that the noise afflicting a quantum device cannot be fully characterized. Further, even with some knowledge of the noise, it can be very challenging to use analytic decoding methods to improve the performance of a fault-tolerant scheme. This thesis presents decoding schemes using several state of the art machine learning techniques with a focus on fault-tolerant quantum error correction in regimes that are relevant to near term experiments. It is shown that even in low noise rate regimes and with no knowledge of the noise, noise can be further suppressed for small distance codes. Limitations of machine learning decoders as well as the classical resources required to perform active error correction are discussed. In many cases, gate times can be much shorter than typical measurement times of quantum states. Further, classical decoding of the syndrome information used in quantum error correction to compute recovery operators can also be much slower than gate times. For these reasons, schemes where error correction can be implemented in a frame (known as the Pauli frame) have been developed to avoid active error correction. In this thesis, we generalize previous Pauli frame schemes and show how Clifford frame error correction can be implemented with minimal overhead. Clifford frame error correction is necessary if the logical component of recovery operators were chosen from the Clifford group, but could also be used in randomized benchmarking schemes

    Proceedings, MSVSCC 2016

    Get PDF
    Proceedings of the 10th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2016 at VMASC in Suffolk, Virginia

    PSA 2016

    Get PDF
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2016

    Laboratory directed research and development. FY 1995 progress report

    Full text link
    corecore