512 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    From Intrusion Detection to an Intrusion Response System: Fundamentals, Requirements, and Future Directions

    Get PDF
    In the past few decades, the rise in attacks on communication devices in networks has resulted in a reduction of network functionality, throughput, and performance. To detect and mitigate these network attacks, researchers, academicians, and practitioners developed Intrusion Detection Systems (IDSs) with automatic response systems. The response system is considered an important component of IDS, since without a timely response IDSs may not function properly in countering various attacks, especially on a real-time basis. To respond appropriately, IDSs should select the optimal response option according to the type of network attack. This research study provides a complete survey of IDSs and Intrusion Response Systems (IRSs) on the basis of our in-depth understanding of the response option for different types of network attacks. Knowledge of the path from IDS to IRS can assist network administrators and network staffs in understanding how to tackle different attacks with state-of-the-art technologies

    Exploiting cloud utility models for profit and ruin

    Get PDF
    A key characteristic that has led to the early adoption of public cloud computing is the utility pricing model that governs the cost of compute resources consumed. Similar to public utilities like gas and electricity, cloud consumers only pay for the resources they consume and only for the time they are utilized. As a result and pursuant to a Cloud Service Provider\u27s (CSP) Terms of Agreement, cloud consumers are responsible for all computational costs incurred within and in support of their rented computing environments whether these resources were consumed in good faith or not. While initial threat modeling and security research on the public cloud model has primarily focused on the confidentiality and integrity of data transferred, processed, and stored in the cloud, little attention has been paid to the external threat sources that have the capability to affect the financial viability of cloud-hosted services. Bounded by a utility pricing model, Internet-facing web resources hosted in the cloud are vulnerable to Fraudulent Resource Consumption (FRC) attacks. Unlike an application-layer DDoS attack that consumes resources with the goal of disrupting short-term availability, a FRC attack is a considerably more subtle attack that instead targets the utility model over an extended time period. By fraudulently consuming web resources in sufficient volume (i.e. data transferred out of the cloud), an attacker is able to inflict significant fraudulent charges to the victim. This work introduces and thoroughly describes the FRC attack and discusses why current application-layer DDoS mitigation schemes are not applicable to a more subtle attack. The work goes on to propose three detection metrics that together form the criteria for detecting a FRC attack from that of normal web activity and an attribution methodology capable of accurately identifying FRC attack clients. Experimental results based on plausible and challenging attack scenarios show that an attacker, without knowledge of the training web log, has a difficult time mimicking the self-similar and consistent request semantics of normal web activity necessary to carryout a successful FRC attack

    A new framework to alleviate DDoS vulnerabilities in cloud computing

    Get PDF
    In the communication age, the Internet has growing very fast and most industries rely on it. An essential part of Internet, Web applications like online booking, e-banking, online shopping, and e-learning plays a vital role in everyday life. Enhancements have been made in this domain, in which the web servers depend on cloud location for resources. Many organizations around the world change their operations and data storage from local to cloud platforms for many reasons especially the availability factor. Even though cloud computing is considered a renowned technology, it has many challenges, the most important one is security. One of the major issue in the cloud security is Distributed Denial of Service attack (DDoS), which results in serious loss if the attack is successful and left unnoticed. This paper focuses on preventing and detecting DDoS attacks in distributed and cloud environment. A new framework has been suggested to alleviate the DDoS attack and to provide availability of cloud resources to its users. The framework introduces three screening tests VISUALCOM, IMGCOM, and AD-IMGCOM to prevent the attack and two queues with certain constraints to detect the attack. The result of our framework shows an improvement and better outcomes and provides a recovered from attack detection with high availability rate. Also, the performance of the queuing model has been analysed

    Detecting network attacks using high-resolution time series

    Get PDF
    Research in the detection of cyber-attacks has sky-rocketed in the recent past. However, there remains a striking gap between usage of the proposed algorithms in academic research versus industrial applications. Leading researchers have argued that efforts toward the understanding of proposed detectors are lacking. By digging deeper into their inner workings and critically evaluating their underlying assumptions, better detectors may be built. The aim of this thesis is therefore to provide an underlying theory for understanding a single class of detection algorithms, in particular, anomaly-based network intrusion detection algorithms that utilise high-resolution time series data. A framework is proposed to deconstruct the algorithms into their constituent components (windows, representations, and deviations). The framework is applied to a class of algorithms, allowing to construct a “space” of algorithms spanned by five variables: windowing procedure, information availability, single- or multi-aggregated representation, marginal distribution model, and deviation. The detection of a simple class of Denial-of-Service (DoS) attacks is modelled as a detection theoretic problem. It is shown that the effect of incomplete information is greatest when detecting low-intensity attacks (less than 5%), however, the effect slowly decays as the attack intensity increases. Next, the representation and deviation components are jointly analysed via a proposed experimental procedure using network traffic from two publicly available datasets: the Measurement and Analysis on the WIDE Internet (MAWI) archive, and the Booters dataset. The experimental analysis shows that varying the representation (single- versus multi-aggregated) has little effect on detection accuracy, and that the likelihood deviation is superior to the L2 distance deviation, although the difference is negligible for large-intensity attacks (approximately 80%)

    INTRUSION DEFENSE MECHANISM USING ARTIFICIAL IMMUNE SYSTEM IN CLOUD COMPUTING (CLOUD SECURITY USING COMPUTATIONAL INTELLIGENCE)

    Get PDF
    Cloud is a general term used in organizations that host various service and deployment models. As cloud computing offers everything a service,it suffers from serious security issues. In addition, the multitenancy facility in the cloud provides storage in the third party data center which is considered to be a serious threat. These threats can be faced by both self-providers and their customers. Hence, the complexity of the security should be increased to a great extend such that it has an effective defense mechanism. Although data isolation is one of the remedies, it could not be a total solution. Hence, a complete architecture is proposed to provide complete defense mechanism. This defense mechanism ensures that the threats are blocked before it invades into the cloud environment. Therefore, we adopt the mechanism called artificial immune system which is derived from biologically inspired computing. This security strategy is based on artificial immune algorithm.Ă‚
    • …
    corecore