2,685 research outputs found

    Multiagent autonomous energy management

    Get PDF
    The objective of this thesis is to design distributed software agents for reliable operation of integrated electric power systems of modern electric warships. The automatic reconfiguration of electric shipboard power systems is an important step toward improved fight-through and self-healing capabilities of naval warships. The improvements are conceptualized by redesigning the electric power system and its controls. This research focuses on a new scheme for an energy management system in the form of distributed control/software agents. Multiagent systems provide an ideal level of abstraction for modeling complex applications where distributed and heterogeneous entities need to cooperate to achieve a common goal. The agents\u27 task is to ensure supply of the various load demands while taking into consideration system constraints and load and supply path priorities. A self-stabilizing maximum flow algorithm is investigated to allow implementation of the agents\u27 strategies and find a global solution by only considering local information and a minimum amount of communication. (Abstract shortened by UMI.)

    Proceedings of the international conference on cooperative multimodal communication CMC/95, Eindhoven, May 24-26, 1995:proceedings

    Get PDF

    Multi-agent Communication Protocols with Emergent Behaviour

    Get PDF
    The emergent behaviour of a multiagent system depends on the component agents and how they interact. A critical part of interaction between agents is communication. This thesis presents a multi-agent system communication model for physical moving agents. The work presented in this thesis provides all the tools to create a physical multi-agent communication system. The model integrates different agent technologies at both the micro and macro level. The micro structure involves the architecture of the individual components in the system whilst the macro structure involves the interaction relationships between these individual components in the system. Regarding the micro structure of the system, the model provides the description of a novel hybrid BDI-Blackboard architectured agent that builds-in a hybrid of reactive and deliberative agent. The macro structure of the system, provided by this model, provides the operational specifications of the communication protocols. The thesis presents a theory of communication that integrates an animal intelligence technique together with a cognitive intelligence one. This results in a local co-ordination of movements, and global task coordination. Accordingly, agents are designed to communicate with other agents in order to coordinate their movements via a set of behavioural rules. These behavioural rules allow a simple directed flocking behaviour to emerge. A flocking algorithm is used because it satisfies a major objective, i.e. it has a real time response to local environmental changes and minimises the cost of path planning. A higher level communication mechanism is implemented for task distribution that is carried out via a blackboard conversation and ii negotiation process with a ground based controller. All the tasks are distributed as team tasks. A novel utilization of speech acts as communication utterances through a blackboard negotiation process is proposed. In order to implement the proposed communication model, a virtual environment is built that satisfies the realism of representing the agents, environment, and the sensors as well as representing the actions. The virtual environment used in the work is built as a semi-immersive full-scale environment and provides the visualisation tools required to test, modify, compare and evaluate different behaviours under different conditions. The visualization tools allow the user to visualize agents negotiations and interacting with them. The 3D visualisation and simulation tools allow the communication protocol to be tested and the emergent behaviour to be seen in an easy and understandable manner. The developed virtual environment can be used as a toolkit to test different communication protocols and different agent’s architecture in real time

    Image and interpretation using artificial intelligence to read ancient Roman texts

    Get PDF
    The ink and stylus tablets discovered at the Roman Fort of Vindolanda are a unique resource for scholars of ancient history. However, the stylus tablets have proved particularly difficult to read. This paper describes a system that assists expert papyrologists in the interpretation of the Vindolanda writing tablets. A model-based approach is taken that relies on models of the written form of characters, and statistical modelling of language, to produce plausible interpretations of the documents. Fusion of the contributions from the language, character, and image feature models is achieved by utilizing the GRAVA agent architecture that uses Minimum Description Length as the basis for information fusion across semantic levels. A system is developed that reads in image data and outputs plausible interpretations of the Vindolanda tablets

    CernoCAMAL : a probabilistic computational cognitive architecture

    Get PDF
    This thesis presents one possible way to develop a computational cognitive architecture, dubbed CernoCAMAL, that can be used to govern artificial minds probabilistically. The primary aim of the CernoCAMAL research project is to investigate how its predecessor architecture CAMAL can be extended to reason probabilistically about domain model objects through perception, and how the probability formalism can be integrated into its BDI (Belief-Desire-Intention) model to coalesce a number of mechanisms and processes. The motivation and impetus for extending CAMAL and developing CernoCAMAL is the considerable evidence that probabilistic thinking and reasoning is linked to cognitive development and plays a role in cognitive functions, such as decision making and learning. This leads us to believe that a probabilistic reasoning capability is an essential part of human intelligence. Thus, it should be a vital part of any system that attempts to emulate human intelligence computationally. The extensions and augmentations to CAMAL, which are the main contributions of the CernoCAMAL research project, are as follows: - The integration of the EBS (Extended Belief Structure) that associates a probability value with every belief statement, in order to represent the degrees of belief numerically. - The inclusion of the CPR (CernoCAMAL Probabilistic Reasoner) that reasons probabilistically over the goal- and task-oriented perceptual feedback generated by reactive sub-systems. - The compatibility of the probabilistic BDI model with the affect and motivational models and affective and motivational valences used throughout CernoCAMAL. A succession of experiments in simulation and robotic testbeds is carried out to demonstrate improvements and increased efficacy in CernoCAMAL’s overall cognitive performance. A discussion and critical appraisal of the experimental results, together with a summary, a number of potential future research directions, and some closing remarks conclude the thesis

    CernoCAMAL : a probabilistic computational cognitive architecture

    Get PDF
    This thesis presents one possible way to develop a computational cognitive architecture, dubbed CernoCAMAL, that can be used to govern artificial minds probabilistically. The primary aim of the CernoCAMAL research project is to investigate how its predecessor architecture CAMAL can be extended to reason probabilistically about domain model objects through perception, and how the probability formalism can be integrated into its BDI (Belief-Desire-Intention) model to coalesce a number of mechanisms and processes.The motivation and impetus for extending CAMAL and developing CernoCAMAL is the considerable evidence that probabilistic thinking and reasoning is linked to cognitive development and plays a role in cognitive functions, such as decision making and learning. This leads us to believe that a probabilistic reasoning capability is an essential part of human intelligence. Thus, it should be a vital part of any system that attempts to emulate human intelligence computationally.The extensions and augmentations to CAMAL, which are the main contributions of the CernoCAMAL research project, are as follows:- The integration of the EBS (Extended Belief Structure) that associates a probability value with every belief statement, in order to represent the degrees of belief numerically.- The inclusion of the CPR (CernoCAMAL Probabilistic Reasoner) that reasons probabilistically over the goal- and task-oriented perceptual feedback generated by reactive sub-systems.- The compatibility of the probabilistic BDI model with the affect and motivational models and affective and motivational valences used throughout CernoCAMAL.A succession of experiments in simulation and robotic testbeds is carried out to demonstrate improvements and increased efficacy in CernoCAMAL’s overall cognitive performance. A discussion and critical appraisal of the experimental results, together with a summary, a number of potential future research directions, and some closing remarks conclude the thesis
    • …
    corecore