2,586 research outputs found

    Generation of High Spatial Resolution Terrestrial Surface from Low Spatial Resolution Elevation Contour Maps via Hierarchical Computation of Median Elevation Regions

    Full text link
    We proposed a simple yet effective morphological approach to convert a sparse Digital Elevation Model (DEM) to a dense Digital Elevation Model. The conversion is similar to that of the generation of high-resolution DEM from its low-resolution DEM. The approach involves the generation of median contours to achieve the purpose. It is a sequential step of the I) decomposition of the existing sparse Contour map into the maximum possible Threshold Elevation Region (TERs). II) Computing all possible non-negative and non-weighted Median Elevation Region (MER) hierarchically between the successive TER decomposed from a sparse contour map. III) Computing the gradient of all TER, and MER computed from previous steps would yield the predicted intermediate elevation contour at a higher spatial resolution. We presented this approach initially with some self-made synthetic data to show how the contour prediction works and then experimented with the available contour map of Washington, NH to justify its usefulness. This approach considers the geometric information of existing contours and interpolates the elevation contour at a new spatial region of a topographic surface until no elevation contours are necessary to generate. This novel approach is also very low-cost and robust as it uses elevation contours.Comment: 11 pages, 6 figures,1 table, 1 algorith

    A differential equation for specific catchment area

    Get PDF
    Analysis of the behavior of specific catchment area in a stream tube leads to a simple nonlinear differential equation describing the rate of change of specific catchment area along a flow path. The differential equation can be integrated numerically along a flow path to calculate specific catchment area at any point on a digital elevation model without requiring the usual estimates of catchment area and width. The method is more computationally intensive than most grid-based methods for calculating specific catchment area, so its main application is as a reference against which conventional methods can be tested. This is the first method that provides a benchmark for more approximate methods in complex terrain with both convergent and divergent areas, not just on simple surfaces for which analytical solutions are known. Preliminary evaluation of the D8, M8, digital elevation model networks (DEMON), and D methods indicate that the D method is the best of those methods for estimating specific catchment area, but all methods overestimate in divergent terrain

    Map Calculus in GIS: a proposal and demonstration

    Get PDF
    This paper provides a new representation for fields (continuous surfaces) in Geographical Information Systems (GIS), based on the notion of spatial functions and their combinations. Following Tomlin's (1990) Map Algebra, the term 'Map Calculus' is used for this new representation. In Map Calculus, GIS layers are stored as functions, and new layers can be created by combinations of other functions. This paper explains the principles of Map Calculus and demonstrates the creation of function-based layers and their supporting management mechanism. The proposal is based on Church's (1941) Lambda Calculus and elements of functional computer languages (such as Lisp or Scheme)

    An H-Adaptive Finite-Element Technique for Constructing 3D Wind Fields

    Full text link
    An h-adaptive, mass-consistent finite-element model (FEM) has been developed for constructing 3D wind fields over irregular terrain utilizing sparse meteorological tower data. The element size in the computational domain is dynamically controlled by an a posteriori error estimator based on the L2 norm. In the h-adaptive FEM algorithm, large element sizes are typically associated with smooth flow regions and small errors; small element sizes are attributed to fast-changing flow regions and large errors. The adaptive procedure employed in this model uses mesh refinement–unrefinement to satisfy error criteria. Results are presented for wind fields using sparse data obtained from two regions within Nevada: 1) the Nevada Test Site, located approximately 65 mi (1 mi ~ 1.6 km) northwest of Las Vegas, and 2) the central region of Nevada, about 100 mi southeast of Reno

    Techniques for augmenting the visualisation of dynamic raster surfaces

    Get PDF
    Despite their aesthetic appeal and condensed nature, dynamic raster surface representations such as a temporal series of a landform and an attribute series of a socio-economic attribute of an area, are often criticised for the lack of an effective information delivery and interactivity.In this work, we readdress some of the earlier raised reasons for these limitations -information-laden quality of surface datasets, lack of spatial and temporal continuity in the original data, and a limited scope for a real-time interactivity. We demonstrate with examples that the use of four techniques namely the re-expression of the surfaces as a framework of morphometric features, spatial generalisation, morphing, graphic lag and brushing can augment the visualisation of dynamic raster surfaces in temporal and attribute series

    Target Element Sizes For Finite Element Tidal Models From A Domain-wide, Localized Truncation Error Analysis Incorporating Botto

    Get PDF
    A new methodology for the determination of target element sizes for the construction of finite element meshes applicable to the simulation of tidal flow in coastal and oceanic domains is developed and tested. The methodology is consistent with the discrete physics of tidal flow, and includes the effects of bottom stress. The method enables the estimation of the localized truncation error of the nonconservative momentum equations throughout a triangulated data set of water surface elevation and flow velocity. The method\u27s domain-wide applicability is due in part to the formulation of a new localized truncation error estimator in terms of complex derivatives. More conventional criteria that are often used to determine target element sizes are limited to certain bathymetric conditions. The methodology developed herein is applicable over a broad range of bathymetric conditions, and can be implemented efficiently. Since the methodology permits the determination of target element size at points up to and including the coastal boundary, it is amenable to coastal domain applications including estuaries, embayments, and riverine systems. These applications require consideration of spatially varying bottom stress and advective terms, addressed herein. The new method, called LTEA-CD (localized truncation error analysis with complex derivatives), is applied to model solutions over the Western North Atlantic Tidal model domain (the bodies of water lying west of the 60° W meridian). The convergence properties of LTEACD are also analyzed. It is found that LTEA-CD may be used to build a series of meshes that produce converging solutions of the shallow water equations. An enhanced version of the new methodology, LTEA+CD (which accounts for locally variable bottom stress and Coriolis terms) is used to generate a mesh of the WNAT model domain having 25% fewer nodes and elements than an existing mesh upon which it is based; performance of the two meshes, in an average sense, is indistinguishable when considering elevation tidal signals. Finally, LTEA+CD is applied to the development of a mesh for the Loxahatchee River estuary; it is found that application of LTEA+CD provides a target element size distribution that, when implemented, outperforms a high-resolution semi-uniform mesh as well as a manually constructed, existing, documented mesh

    Enhancement of height system for Malaysia using space technology: the study of the datum bias inconsistencies in Peninsular Malaysia

    Get PDF
    The algorithm for orthometric height transfer using GPS has been widely presented. Its practical limitations are mostly due to datum bias inconsistencies and lack of precise geoid. In most applications, datum biases are assumed to be systematic over short baselines and therefore could be eliminated by differential heighting techniques. In this study, optimal algorithms were investigated to model biases between local vertical datum in Peninsular Malaysia and the datums implied by by EGM96, OSU91A and the regional Gravimetric Geoid in South_East Asia. The study has indicated that local vertical datum is not physically parallel to the datums implied by the above geoids. The shift parameters between the datums implied by the GPS/leveling data, and the EGM96, OSU91A and the gravimetric datums are about – 41cm, -54 cm and – 8 cm respectively. Also the maximum tilts of the planes fitting the residual geoids above these datums relative to GPS/Leveling datum are of the order of 36, 51 and 33 centimeters per degree. It is therefore necessary to take into account the effect of inconsistent datum bias particularly for baseline height transfer. The level of accuracy achieved by the bias corrected relative orthometric height differences of the EGM96, OSU91A and the gravimetric geoid models combined with GPS/leveling data for baseline lengths up to 36 km, is sufficient to replace the conventional tedious, time consuming ordinary leveling technique for rapid height transfer for land surveying and engineering applications

    Coastal Flood Risk in a Changing Climate along the Northern Gulf of Mexico

    Get PDF
    Coastal regions around the world are experiencing increased vulnerability from natural and manmade disasters. It is anticipated that coastal flood risk will increase due to the effects of climate change, and sea level rise (SLR) in particular. A dynamic, physics-based, framework to compute coastal flood inundation maps under various climate change scenarios was developed. The novel modeling system includes not only SLR, but considers future projections of shoreline evolution and primary dune morphology, upland migration of intertidal marsh, and land use land cover change. A present day hurricane storm surge model was generated for the Mississippi, Alabama, and Florida panhandle coasts. The model was shown to agree with measured data for astronomic tides and hurricane storm surge (Hurricanes Ivan, Dennis, Katrina, and Isaac) for present day conditions. The present day model was then modified to portray the potential outlook of the coastal landscape under climate change scenarios coupled to SLR scenarios. Shoreline profiles were modified (including the primary dune) and intertidal regions were permitted to migrate upland considering coastal infrastructure from impending migration. Bottom friction and hurricane wind reduction parameters were altered as informed from land use land cover projections. The various model configurations representing the future coastal landscape were forced by a suite of historical and synthetic tropical cyclones and flood maximum flood depths and inundation extents are computed. The collection of results allow the development of flood risk maps for varying scenarios of SLR and highlight the vulnerability of the coast to potential future climate change conditions
    • …
    corecore