37 research outputs found

    Constructing a lattice of Infectious Disease Ontologies from a Staphylococcus aureus isolate repository

    Get PDF
    A repository of clinically associated Staphylococcus aureus (Sa) isolates is used to semi‐automatically generate a set of application ontologies for specific subfamilies of Sa‐related disease. Each such application ontology is compatible with the Infectious Disease Ontology (IDO) and uses resources from the Open Biomedical Ontology (OBO) Foundry. The set of application ontologies forms a lattice structure beneath the IDO‐Core and IDO‐extension reference ontologies. We show how this lattice can be used to define a strategy for the construction of a new taxonomy of infectious disease incorporating genetic, molecular, and clinical data. We also outline how faceted browsing and query of annotated data is supported using a lattice application ontology

    Ontological representation of CDC Active Bacterial Core Surveillance Case Reports

    Get PDF
    The Center for Disease Control and Prevention’s Active Bacterial Core Surveillance (CDC ABCs) Program is a collaborative effort betweeen the CDC, state health departments, laboratories, and universities to track invasive bacterial pathogens of particular importance to public health [1]. The year-end surveillance reports produced by this program help to shape public policy and coordinate responses to emerging infectious diseases over time. The ABCs case report form (CRF) data represents an excellent opportunity for data reuse beyond the original surveillance purposes

    The Infectious Disease Ontology in the Age of COVID-19

    Get PDF
    The Infectious Disease Ontology (IDO) is a suite of interoperable ontology modules that aims to provide coverage of all aspects of the infectious disease domain, including biomedical research, clinical care, and public health. IDO Core is designed to be a disease and pathogen neutral ontology, covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is then extended by a collection of ontology modules focusing on specific diseases and pathogens. In this paper we present applications of IDO Core within various areas of infectious disease research, together with an overview of all IDO extension ontologies and the methodology on the basis of which they are built. We also survey recent developments involving IDO, including the creation of IDO Virus; the Coronaviruses Infectious Disease Ontology (CIDO); and an extension of CIDO focused on COVID-19 (IDO-CovID-19).We also discuss how these ontologies might assist in information-driven efforts to deal with the ongoing COVID-19 pandemic, to accelerate data discovery in the early stages of future pandemics, and to promote reproducibility of infectious disease research

    Barry Smith an sich

    Get PDF
    Festschrift in Honor of Barry Smith on the occasion of his 65th Birthday. Published as issue 4:4 of the journal Cosmos + Taxis: Studies in Emergent Order and Organization. Includes contributions by Wolfgang Grassl, Nicola Guarino, John T. Kearns, Rudolf LĂŒthe, Luc Schneider, Peter Simons, Wojciech Ć»eƂaniec, and Jan WoleƄski

    Publications by Barry Smith

    Get PDF

    Die Integration von Multiskalen- und Multi-Omik-Daten zur Erforschung von Wirt-Pathogen-Interaktionen am Beispiel von pathogenen Pilzen

    Get PDF
    The ongoing development and improvement of novel measurement techniques for scientific research result in a huge amount of available data coming from hetero- geneous sources. Amongst others, these sources comprise diverse temporal and spatial scales including different omics levels. The integration of such multiscale and multi-omics data enables a comprehensive understanding of the complexity and dynamics of biological systems and their processes. However, due to the biologically and methodically induced data heterogeneity, the integration process is a well-known challenge in nowadays life science. Applying several computational integration approaches, the present doctoral thesis aimed at gaining new insights into the field of infection biology regarding host- pathogen interactions. In this context, the focus was on fungal pathogens causing a variety of local and systemic infections. Based on current examples of research, on the one hand, several well-established approaches for the analysis of multiscale and multi- omics data have been presented. On the other hand, the novel ModuleDiscoverer approach was introduced to identify regulatory modules in protein-protein interac- tion networks. It has been shown that ModuleDiscoverer effectively supports the integration of multi-omics data and, in addition, allows the detection of potential key factors that cannot be detected by other classical approaches. This thesis provides deeper insights into the complex relationships and dynamics of biological systems and, thus, represents an important contribution to the investigation of host-pathogen interactions. Due to the interactions complexity and the limitations of the currently available knowledge databases as well as the bioinformatic tools, further research is necessary to gain a comprehensive understanding of the complexity of biological systems
    corecore