112 research outputs found

    Desarrollo automatizado de sistemas teleo-reactivos a partir de objetivos: un enfoque basado en componentes y dirigido por modelos

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones. Está formada por un total de cuatro artículos publicados en revistas del segundo cuartil del Journal Citation Reports. El artículo “A systematic literature review of the Teleo-Reactive paradigm” ofrece una completa revisión sistemática de la literatura existente sobre el paradigma Teleo-Reactivo desde su presentación por el profesor Nils Nilsson en el año 1994. Su papel en esta tesis es el de servir de estado del arte de dicho paradigma, ofreciendo una buena perspectiva de la evolución de los sistemas Teleo-Reactivos desde su formulación hasta el presente. Para poder desarrollar sistemas Teleo-Reactivos a partir de objetivos, surgió la necesidad de especificar los requisitos de estos sistemas usando el lenguaje más apropiado. Ese es uno de los objetivos principales del artículo “A controlled experiment to evaluate the understandability of KAOS and i* for modeling Teleo-Reactive systems”. Como resultado de dicho trabajo se decidió utilizar i* dado que el experimento realizado mostró que las especificaciones realizadas con dicho lenguaje resultaban ligeramente más comprensibles que las realizadas con KAOS. Aunque i* resultaba más comprensible a la hora de especificar requisitos para sistemas Teleo-Reactivos, también presentaba ciertas debilidades. Estas debilidades han sido descritas detalladamente en el artículo “A family of experiments to evaluate the understandability of TRiStar and i* for modeling Teleo-Reactive systems”, en el que además se propone una extensión al lenguaje que permite superarlas. La extensión propuesta se denomina TRiStar y fue inicialmente presentada en [Morales15]. TRiStar ha demostrado superar los problemas de comprensibilidad identificados en i* en el modelado de sistemas Teleo-Reactivos mediante una familia de experimentos realizada con estudiantes de últimos cursos de grado y con desarrolladores software experimentados, cuyos resultados se exponen exhaustivamente en el artículo mencionado. En él se describe, además, un mecanismo que permite obtener mediante transformación de modelos el programa Teleo-Reactivo equivalente a un diagrama TRiStar dado. TRiStar permite, por lo tanto, partiendo de los objetivos de un sistema Teleo-Reactivo obtener un diagrama que especifique su comportamiento. Ese diagrama puede ser transformado en un programa Teleo-Reactivo equivalente. Y siguiendo las transformaciones descritas en “From Teleo-Reactive specifications to architectural components: a model-driven approach” se puede obtener a partir del programa Teleo-Reactivo el modelo de componentes y la máquina de estados que describe el comportamiento de cada uno de esos componentes. Con estos elementos y usando un framework como el descrito en [Iborra09] se cerraría el proceso de desarrollo del sistema Teleo-Reactivo. Como resultado de las investigaciones realizadas en el transcurso de esta tesis, y aunque no forma parte del compendio, hay un quinto artículo [Sánchez16] que está en segunda revisión en el Journal of Systems and Software en el que se estudian las posibilidades de introducir requisitos de tiempo real cuando se sigue el enfoque Teleo-Reactivo desde el modelado a la implementación de un sistema. Tras realizar un estudio del tipo de restricciones temporales que se pueden imponer desde el punto de vista Teleo-Reactivo, se considera la posibilidad de utilizar TeleoR [Clark14] para incorporar dichas restricciones y se proponene una serie de extensiones a TRiStar para permitir representar requisitos temporales. Estas extensiones dan lugar a lo que hemos llamado TRiStar+. [ENG] This doctoral dissertation has been presented in the form of thesis by publication. It is comprised of four articles indexed in the second quartile of the Journal Citation Reports. The article “A systematic literature review of the Teleo-Reactive paradigm” offers a complete systematic review of the existing literature on the Teleo-Reactive paradigm since Prof. Nils Nilsson presented it in 1994. It plays the role of state of the art of that paradigm, showing a perspective of the evolution of Teleo-Reactive systems from their formulation to present time. In order to develop Teleo-Reactive systems starting from its goals, there is the need of specifying the requirements of these systems using the most adequate language. That is one of the main objectives of the article “A controlled experiment to evaluate the understandability of KAOS and i* for modeling Teleo-Reactive systems”. As a result, we decided to use i* because the experiment showed that i* specifications where slightly more understandable than those made using KAOS. Although i* was more understandable when specifying requirements for Teleo-Reactive systems, the experiment also showed some shortcomings. These shortcomings have been deeply described in the article “A family of experiments to evaluate the understandability of TRiStar and i* for modeling Teleo-Reactive systems”. In this article, an extension to i* is proposed in order to overcome the identified limitations. The proposed extension is named TRiStar and was initially presented at [Morales15]. TRiStar has shown to be more understandable than i* when modeling Teleo-Reactive systems through a family of experiments done with last year students and experienced software developers, whose results are described in the aforementioned article. In that article, a mechanism to obtain a Teleo-Reactive program starting from a TRiStar diagram is also described. Therefore, TRiStar allows obtaining a diagram which specifies the behavior of a Teleo-Reactive system starting from its goals. That diagram can be transformed into an equivalent Teleo-Reactive program. Then, following the transformations described in “From Teleo-Reactive specifications to architectural components: a model-driven approach”, a component model and the state machine describing the behavior of each of those components can be obtained. With these elements and using a framework as that described in [Iborra09], the development process of the Teleo-Reactive system would be finished. As a result of the research carried out during this dissertation there is another article, which is not comprised in the compilation, in second revision at the Journal of Systems and Software [Sánchez16]. In that article, after making a study of the type of timing constraints from the TR perspective, we consider the possibility of using TeleoR [Clark14] for incorporating such constraints. Some extensions on TRiStar notation are proposed to represent temporal requirements. Those extensions have been named TRiStar+.[ENG] This doctoral dissertation has been presented in the form of thesis by publication. It is comprised of four articles indexed in the second quartile of the Journal Citation Reports. The article “A systematic literature review of the Teleo-Reactive paradigm” offers a complete systematic review of the existing literature on the Teleo-Reactive paradigm since Prof. Nils Nilsson presented it in 1994. It plays the role of state of the art of that paradigm, showing a perspective of the evolution of Teleo-Reactive systems from their formulation to present time. In order to develop Teleo-Reactive systems starting from its goals, there is the need of specifying the requirements of these systems using the most adequate language. That is one of the main objectives of the article “A controlled experiment to evaluate the understandability of KAOS and i* for modeling Teleo-Reactive systems”. As a result, we decided to use i* because the experiment showed that i* specifications where slightly more understandable than those made using KAOS. Although i* was more understandable when specifying requirements for Teleo-Reactive systems, the experiment also showed some shortcomings. These shortcomings have been deeply described in the article “A family of experiments to evaluate the understandability of TRiStar and i* for modeling Teleo-Reactive systems”. In this article, an extension to i* is proposed in order to overcome the identified limitations. The proposed extension is named TRiStar and was initially presented at [Morales15]. TRiStar has shown to be more understandable than i* when modeling Teleo-Reactive systems through a family of experiments done with last year students and experienced software developers, whose results are described in the aforementioned article. In that article, a mechanism to obtain a Teleo-Reactive program starting from a TRiStar diagram is also described. Therefore, TRiStar allows obtaining a diagram which specifies the behavior of a Teleo-Reactive system starting from its goals. That diagram can be transformed into an equivalent Teleo-Reactive program. Then, following the transformations described in “From Teleo-Reactive specifications to architectural components: a model-driven approach”, a component model and the state machine describing the behavior of each of those components can be obtained. With these elements and using a framework as that described in [Iborra09], the development process of the Teleo-Reactive system would be finished. As a result of the research carried out during this dissertation there is another article, which is not comprised in the compilation, in second revision at the Journal of Systems and Software [Sánchez16]. In that article, after making a study of the type of timing constraints from the TR perspective, we consider the possibility of using TeleoR [Clark14] for incorporating such constraints. Some extensions on TRiStar notation are proposed to represent temporal requirements. Those extensions have been named TRiStar+.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione

    Unified Behavior Framework for Discrete Event Simulation Systems

    Get PDF
    Intelligent agents provide simulations a means to add lifelike behavior in place of manned entities. Generally when developed, a single intelligent agent model is chosen, such as rule based, behavior trees, etc. This choice introduces restrictions into what behaviors agents can manifest, and can require significant testing in edge cases. This thesis presents the use of the UBF in the AFSIM environment. The UBF provides the flexibility to implement any and all intelligent agent models, allowing the developer to choose the model he/she feels best fits the experiment at hand. Furthermore, the UBF demonstrates several key software engineering principles through its modular design, including scalability through reduced code complexity, simplified development and testing through abstraction, and the promotion of code reuse

    08361 Abstracts Collection -- Programming Multi-Agent Systems

    Get PDF
    From 31th August to 5th September, the Dagstuhl Seminar 08361 ``Programming Multi-Agent Systems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Designing Behavior Trees from Goal-Oriented LTLf Formulas

    Full text link
    Temporal logic can be used to formally specify autonomous agent goals, but synthesizing planners that guarantee goal satisfaction can be computationally prohibitive. This paper shows how to turn goals specified using a subset of finite trace Linear Temporal Logic (LTL) into a behavior tree (BT) that guarantees that successful traces satisfy the LTL goal. Useful LTL formulas for achievement goals can be derived using achievement-oriented task mission grammars, leading to missions made up of tasks combined using LTL operators. Constructing BTs from LTL formulas leads to a relaxed behavior synthesis problem in which a wide range of planners can implement the action nodes in the BT. Importantly, any successful trace induced by the planners satisfies the corresponding LTL formula. The usefulness of the approach is demonstrated in two ways: a) exploring the alignment between two planners and LTL goals, and b) solving a sequential key-door problem for a Fetch robot.Comment: Accepted as "Most Visionary Paper" in Autonomous Robots and Multirobot Systems (ARMS) 2023 workshop affiliated with the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2023

    Optimizing minimal agents through abstraction

    Get PDF
    Abstraction is a valuable tool for dealing with scalability in large state space contexts. This paper addresses the design, using abstraction, of good policies for minimal autonomous agents applied within a situation-graph-framework. In this framework an agent’s policy is some function that maps perceptual inputs to actions deterministically. A good policy disposes the agent towards achieving one or more designated goal situations, and the design process aims to identify such policies. The agents to which the framework applies are assumed to have only partial observability, and in particular may not be able to perceive fully a goal situation. A further assumption is that the environment may influence an agent’s situation by unpredictable exogenous events, so that a policy cannot take advantage, of a reliable history of previous actions. The Bellman discount measure provides a means of evaluating situations and hence the overall value of a policy. When abstraction is used, the accuracy of the method can be significantly improved by modifying the standard Bellman equations. This paper describes the modification and demonstrates its power through comparison with simulation results

    SAGE: A Logical Agent-Based Environment Monitoring and Control System

    Full text link
    corecore