109,951 research outputs found

    Development of New Space Systems Architecture in SYSML Using Model-Based Pattern Language

    Get PDF
    This manuscript presents an approach to the application of the Model-Based Systems Engineering (MBSE) and Model-Based Systems Architecting (MBSA) principles to develop a Model-Based Pattern Language (MBPL). It takes considerable time for systems engineers and mission architects to develop a new system from scratch, particularly new space-based systems derived from the existing space system architectures. The use of a pattern language which is a holistic view of reusable logical model artifacts, can improve the process. The main benefit of the pattern language is to reduce the time and validation required to generate a new space-based system architecture; this approach will develop top-level requirements in the initial phase of the system development. The approach of the methodology in this research was to collect and decompose published literature and other open-source information available on space system architectures and system models. After those were generated, SysML models for systems, sub-systems, products, assembly, subassembly level, and mission-specific requirements were derived from the existing systems and documents using CAMEO SysML software. These patterns were then arranged into a functional ontology and used to construct a logical architecture pattern library. This approach created, updated, and managed a SysML pattern language, which expedited new model construction. The goal was to develop a logical pattern language using public domain information and evaluate patterns by constructing a new space mission. This research was partly funded by the NASA Advanced Concepts Office (ACO) Huntsville, AL., during 2021

    Advances in the Design and Implementation of a Multi-Tier Architecture in the GIPSY Environment

    Get PDF
    We present advances in the software engineering design and implementation of the multi-tier run-time system for the General Intensional Programming System (GIPSY) by further unifying the distributed technologies used to implement the Demand Migration Framework (DMF) in order to streamline distributed execution of hybrid intensional-imperative programs using Java.Comment: 11 pages, 3 figure

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Domino: exploring mobile collaborative software adaptation

    Get PDF
    Social Proximity Applications (SPAs) are a promising new area for ubicomp software that exploits the everyday changes in the proximity of mobile users. While a number of applications facilitate simple file sharing between co–present users, this paper explores opportunities for recommending and sharing software between users. We describe an architecture that allows the recommendation of new system components from systems with similar histories of use. Software components and usage histories are exchanged between mobile users who are in proximity with each other. We apply this architecture in a mobile strategy game in which players adapt and upgrade their game using components from other players, progressing through the game through sharing tools and history. More broadly, we discuss the general application of this technique as well as the security and privacy challenges to such an approach

    A Pattern Language for High-Performance Computing Resilience

    Full text link
    High-performance computing systems (HPC) provide powerful capabilities for modeling, simulation, and data analytics for a broad class of computational problems. They enable extreme performance of the order of quadrillion floating-point arithmetic calculations per second by aggregating the power of millions of compute, memory, networking and storage components. With the rapidly growing scale and complexity of HPC systems for achieving even greater performance, ensuring their reliable operation in the face of system degradations and failures is a critical challenge. System fault events often lead the scientific applications to produce incorrect results, or may even cause their untimely termination. The sheer number of components in modern extreme-scale HPC systems and the complex interactions and dependencies among the hardware and software components, the applications, and the physical environment makes the design of practical solutions that support fault resilience a complex undertaking. To manage this complexity, we developed a methodology for designing HPC resilience solutions using design patterns. We codified the well-known techniques for handling faults, errors and failures that have been devised, applied and improved upon over the past three decades in the form of design patterns. In this paper, we present a pattern language to enable a structured approach to the development of HPC resilience solutions. The pattern language reveals the relations among the resilience patterns and provides the means to explore alternative techniques for handling a specific fault model that may have different efficiency and complexity characteristics. Using the pattern language enables the design and implementation of comprehensive resilience solutions as a set of interconnected resilience patterns that can be instantiated across layers of the system stack.Comment: Proceedings of the 22nd European Conference on Pattern Languages of Program
    corecore