1,279 research outputs found

    Exploiting multimedia in creating and analysing multimedia Web archives

    No full text
    The data contained on the web and the social web are inherently multimedia and consist of a mixture of textual, visual and audio modalities. Community memories embodied on the web and social web contain a rich mixture of data from these modalities. In many ways, the web is the greatest resource ever created by human-kind. However, due to the dynamic and distributed nature of the web, its content changes, appears and disappears on a daily basis. Web archiving provides a way of capturing snapshots of (parts of) the web for preservation and future analysis. This paper provides an overview of techniques we have developed within the context of the EU funded ARCOMEM (ARchiving COmmunity MEMories) project to allow multimedia web content to be leveraged during the archival process and for post-archival analysis. Through a set of use cases, we explore several practical applications of multimedia analytics within the realm of web archiving, web archive analysis and multimedia data on the web in general

    A Web video retrieval method using hierarchical structure of Web video groups

    Get PDF
    In this paper, we propose a Web video retrieval method that uses hierarchical structure of Web video groups. Existing retrieval systems require users to input suitable queries that identify the desired contents in order to accurately retrieve Web videos; however, the proposed method enables retrieval of the desired Web videos even if users cannot input the suitable queries. Specifically, we first select representative Web videos from a target video dataset by using link relationships between Web videos obtained via metadata “related videos” and heterogeneous video features. Furthermore, by using the representative Web videos, we construct a network whose nodes and edges respectively correspond to Web videos and links between these Web videos. Then Web video groups, i.e., Web video sets with similar topics are hierarchically extracted based on strongly connected components, edge betweenness and modularity. By exhibiting the obtained hierarchical structure of Web video groups, users can easily grasp the overview of many Web videos. Consequently, even if users cannot write suitable queries that identify the desired contents, it becomes feasible to accurately retrieve the desired Web videos by selecting Web video groups according to the hierarchical structure. Experimental results on actual Web videos verify the effectiveness of our method

    Learning to Hash-tag Videos with Tag2Vec

    Full text link
    User-given tags or labels are valuable resources for semantic understanding of visual media such as images and videos. Recently, a new type of labeling mechanism known as hash-tags have become increasingly popular on social media sites. In this paper, we study the problem of generating relevant and useful hash-tags for short video clips. Traditional data-driven approaches for tag enrichment and recommendation use direct visual similarity for label transfer and propagation. We attempt to learn a direct low-cost mapping from video to hash-tags using a two step training process. We first employ a natural language processing (NLP) technique, skip-gram models with neural network training to learn a low-dimensional vector representation of hash-tags (Tag2Vec) using a corpus of 10 million hash-tags. We then train an embedding function to map video features to the low-dimensional Tag2vec space. We learn this embedding for 29 categories of short video clips with hash-tags. A query video without any tag-information can then be directly mapped to the vector space of tags using the learned embedding and relevant tags can be found by performing a simple nearest-neighbor retrieval in the Tag2Vec space. We validate the relevance of the tags suggested by our system qualitatively and quantitatively with a user study

    Large-scale interactive exploratory visual search

    Get PDF
    Large scale visual search has been one of the challenging issues in the era of big data. It demands techniques that are not only highly effective and efficient but also allow users conveniently express their information needs and refine their intents. In this thesis, we focus on developing an exploratory framework for large scale visual search. We also develop a number of enabling techniques in this thesis, including compact visual content representation for scalable search, near duplicate video shot detection, and action based event detection. We propose a novel scheme for extremely low bit rate visual search, which sends compressed visual words consisting of vocabulary tree histogram and descriptor orientations rather than descriptors. Compact representation of video data is achieved through identifying keyframes of a video which can also help users comprehend visual content efficiently. We propose a novel Bag-of-Importance model for static video summarization. Near duplicate detection is one of the key issues for large scale visual search, since there exist a large number nearly identical images and videos. We propose an improved near-duplicate video shot detection approach for more effective shot representation. Event detection has been one of the solutions for bridging the semantic gap in visual search. We particular focus on human action centred event detection. We propose an enhanced sparse coding scheme to model human actions. Our proposed approach is able to significantly reduce computational cost while achieving recognition accuracy highly comparable to the state-of-the-art methods. At last, we propose an integrated solution for addressing the prime challenges raised from large-scale interactive visual search. The proposed system is also one of the first attempts for exploratory visual search. It provides users more robust results to satisfy their exploring experiences

    Movie Tags Prediction and Segmentation Using Deep Learning

    Get PDF
    The sheer volume of movies generated these days requires an automated analytics for ef cient classi cation, query-based search, and extraction of desired information. These tasks can only be ef ciently performed by a machine learning based algorithm. We address the same issue in this paper by proposing a deep learning based technique for predicting the relevant tags for a movie and segmenting the movie with respect to the predicted tags. We construct a tag vocabulary and create the corresponding dataset in order to train a deep learning model. Subsequently, we propose an ef cient shot detection algorithm to nd the key frames in the movie. The extracted key frames are analyzed by the deep learning model to predict the top three tags for each frame. The tags are then assigned weighted scores and are ltered to generate a compact set of most relevant tags. This process also generates a corpus which is further used to segment a movie based on a selected tag. We present a rigorous analysis of the segmentation quality with respect to the number of tags selected for the segmentation. Our detailed experiments demonstrate that the proposed technique is not only ef cacious in predicting the most relevant tags for a movie, but also in segmenting the movie with respect to the selected tags with a high accuracy
    • 

    corecore