44,946 research outputs found

    Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments

    Full text link
    This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models

    Sampling-Based Methods for Factored Task and Motion Planning

    Full text link
    This paper presents a general-purpose formulation of a large class of discrete-time planning problems, with hybrid state and control-spaces, as factored transition systems. Factoring allows state transitions to be described as the intersection of several constraints each affecting a subset of the state and control variables. Robotic manipulation problems with many movable objects involve constraints that only affect several variables at a time and therefore exhibit large amounts of factoring. We develop a theoretical framework for solving factored transition systems with sampling-based algorithms. The framework characterizes conditions on the submanifold in which solutions lie, leading to a characterization of robust feasibility that incorporates dimensionality-reducing constraints. It then connects those conditions to corresponding conditional samplers that can be composed to produce values on this submanifold. We present two domain-independent, probabilistically complete planning algorithms that take, as input, a set of conditional samplers. We demonstrate the empirical efficiency of these algorithms on a set of challenging task and motion planning problems involving picking, placing, and pushing

    On the Optimality of a Class of LP-based Algorithms

    Full text link
    In this paper we will be concerned with a class of packing and covering problems which includes Vertex Cover and Independent Set. Typically, one can write an LP relaxation and then round the solution. In this paper, we explain why the simple LP-based rounding algorithm for the \\VC problem is optimal assuming the UGC. Complementing Raghavendra's result, our result generalizes to a class of strict, covering/packing type CSPs

    Hypothesis Testing For Network Data in Functional Neuroimaging

    Get PDF
    In recent years, it has become common practice in neuroscience to use networks to summarize relational information in a set of measurements, typically assumed to be reflective of either functional or structural relationships between regions of interest in the brain. One of the most basic tasks of interest in the analysis of such data is the testing of hypotheses, in answer to questions such as "Is there a difference between the networks of these two groups of subjects?" In the classical setting, where the unit of interest is a scalar or a vector, such questions are answered through the use of familiar two-sample testing strategies. Networks, however, are not Euclidean objects, and hence classical methods do not directly apply. We address this challenge by drawing on concepts and techniques from geometry, and high-dimensional statistical inference. Our work is based on a precise geometric characterization of the space of graph Laplacian matrices and a nonparametric notion of averaging due to Fr\'echet. We motivate and illustrate our resulting methodologies for testing in the context of networks derived from functional neuroimaging data on human subjects from the 1000 Functional Connectomes Project. In particular, we show that this global test is more statistical powerful, than a mass-univariate approach. In addition, we have also provided a method for visualizing the individual contribution of each edge to the overall test statistic.Comment: 34 pages. 5 figure

    Doubly autoparallel structure on the probability simplex

    Full text link
    On the probability simplex, we can consider the standard information geometric structure with the e- and m-affine connections mutually dual with respect to the Fisher metric. The geometry naturally defines submanifolds simultaneously autoparallel for the both affine connections, which we call {\em doubly autoparallel submanifolds}. In this note we discuss their several interesting common properties. Further, we algebraically characterize doubly autoparallel submanifolds on the probability simplex and give their classification
    corecore