51,773 research outputs found

    Semantic Query Optimisation with Ontology Simulation

    Full text link
    Semantic Web is, without a doubt, gaining momentum in both industry and academia. The word "Semantic" refers to "meaning" - a semantic web is a web of meaning. In this fast changing and result oriented practical world, gone are the days where an individual had to struggle for finding information on the Internet where knowledge management was the major issue. The semantic web has a vision of linking, integrating and analysing data from various data sources and forming a new information stream, hence a web of databases connected with each other and machines interacting with other machines to yield results which are user oriented and accurate. With the emergence of Semantic Web framework the na\"ive approach of searching information on the syntactic web is clich\'e. This paper proposes an optimised semantic searching of keywords exemplified by simulation an ontology of Indian universities with a proposed algorithm which ramifies the effective semantic retrieval of information which is easy to access and time saving

    VisIVOWeb: A WWW Environment for Large-Scale Astrophysical Visualization

    Get PDF
    This article presents a newly developed Web portal called VisIVOWeb that aims to provide the astrophysical community with powerful visualization tools for large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively handle modern numerical simulations and real-world observations. Our open-source software is based on established visualization toolkits offering high-quality rendering algorithms. The underlying data management is discussed with the supported visualization interfaces and movie-making functionality. We introduce VisIVOWeb Network, a robust network of customized Web portals for visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution for seamlessly connecting to existing astrophysical archives. A significant effort has been devoted for ensuring interoperability with existing tools by adhering to IVOA standards. We conclude with a summary of our work and a discussion on future developments

    An ontology for software component matching

    Get PDF
    The Web is likely to be a central platform for software development in the future. We investigate how Semantic Web technologies, in particular ontologies, can be utilised to support software component development in a Web environment. We use description logics, which underlie Semantic Web ontology languages such as DAML+OIL, to develop an ontology for matching requested and provided components. A link between modal logic and description logics will prove invaluable for the provision of reasoning support for component and service behaviour

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Grid-enabled SIMAP utility: Motivation, integration technology and performance results

    Get PDF
    A biological system comprises large numbers of functionally diverse and frequently multifunctional sets of elements that interact selectively and nonlinearly to produce coherent behaviours. Such a system can be anything from an intracellular biological process (such as a biochemical reaction cycle, gene regulatory network or signal transduction pathway) to a cell, tissue, entire organism, or even an ecological web. Biochemical systems are responsible for processing environmental signals, inducing the appropriate cellular responses and sequence of internal events. However, such systems are not fully or even poorly understood. Systems biology is a scientific field that is concerned with the systematic study of biological and biochemical systems in terms of complex interactions rather than their individual molecular components. At the core of systems biology is computational modelling (also called mathematical modelling), which is the process of constructing and simulating an abstract model of a biological system for subsequent analysis. This methodology can be used to test hypotheses via insilico experiments, providing predictions that can be tested by in-vitro and in-vivo studies. For example, the ERbB1-4 receptor tyrosine kinases (RTKs) and the signalling pathways they activate, govern most core cellular processes such as cell division, motility and survival (Citri and Yarden, 2006) and are strongly linked to cancer when they malfunction due to mutations etc. An ODE (ordinary differential equation)-based mass action ErbB model has been constructed and analysed by Chen et al. (2009) in order to depict what roles of each protein plays and ascertain to how sets of proteins coordinate with each other to perform distinct physiological functions. The model comprises 499 species (molecules), 201 parameters and 828 reactions. These in silico experiments can often be computationally very expensive, e.g. when multiple biochemical factors are being considered or a variety of complex networks are being simulated simultaneously. Due to the size and complexity of the models and the requirement to perform comprehensive experiments it is often necessary to use high-performance computing (HPC) to keep the experimental time within tractable bounds. Based on this as part of an EC funded cancer research project, we have developed the SIMAP Utility that allows the SImulation modeling of the MAP kinase pathway (http://www.simap-project.org). In this paper we present experiences with Grid-enabling SIMAP using Condor

    An ontology for software component matching

    Get PDF
    Matching is a central activity in the discovery and assembly of reusable software components. We investigate how ontology technologies can be utilised to support software component development. We use description logics, which underlie Semantic Web ontology languages such as OWL, to develop an ontology for matching requested and provided components. A link between modal logic and description logics will prove invaluable for the provision of reasoning support for component behaviour

    JetWeb: A WWW Interface and Database for Monte Carlo Tuning and Validation

    Full text link
    A World Wide Web interface to a Monte Carlo validation and tuning facility is described. The aim of the package is to allow rapid and reproducible comparisons to be made between detailed measurements at high-energy physics colliders and general physics simulation packages. The package includes a relational database, a Java servlet query and display facility, and clean interfaces to simulation packages and their parameters.Comment: See http://jetweb.hep.ucl.ac.uk for further informatio
    • ā€¦
    corecore