18,078 research outputs found

    Variable sets over an algebra of lifetimes: a contribution of lattice theory to the study of computational topology

    Full text link
    A topos theoretic generalisation of the category of sets allows for modelling spaces which vary according to time intervals. Persistent homology, or more generally, persistence is a central tool in topological data analysis, which examines the structure of data through topology. The basic techniques have been extended in several different directions, permuting the encoding of topological features by so called barcodes or equivalently persistence diagrams. The set of points of all such diagrams determines a complete Heyting algebra that can explain aspects of the relations between persistent bars through the algebraic properties of its underlying lattice structure. In this paper, we investigate the topos of sheaves over such algebra, as well as discuss its construction and potential for a generalised simplicial homology over it. In particular we are interested in establishing a topos theoretic unifying theory for the various flavours of persistent homology that have emerged so far, providing a global perspective over the algebraic foundations of applied and computational topology.Comment: 20 pages, 12 figures, AAA88 Conference proceedings at Demonstratio Mathematica. The new version has restructured arguments, clearer intuition is provided, and several typos correcte

    Crystals, instantons and quantum toric geometry

    Full text link
    We describe the statistical mechanics of a melting crystal in three dimensions and its relation to a diverse range of models arising in combinatorics, algebraic geometry, integrable systems, low-dimensional gauge theories, topological string theory and quantum gravity. Its partition function can be computed by enumerating the contributions from noncommutative instantons to a six-dimensional cohomological gauge theory, which yields a dynamical realization of the crystal as a discretization of spacetime at the Planck scale. We describe analogous relations between a melting crystal model in two dimensions and N=4 supersymmetric Yang-Mills theory in four dimensions. We elaborate on some mathematical details of the construction of the quantum geometry which combines methods from toric geometry, isospectral deformation theory and noncommutative geometry in braided monoidal categories. In particular, we relate the construction of noncommutative instantons to deformed ADHM data, torsion-free modules and a noncommutative twistor correspondence.Comment: 33 pages, 5 figures; Contribution to the proceedings of "Geometry and Physics in Cracow", Jagiellonian University, Cracow, Poland, September 21-25, 2010. To be published in Acta Physica Polonica Proceedings Supplemen

    The Importance of Forgetting: Limiting Memory Improves Recovery of Topological Characteristics from Neural Data

    Full text link
    We develop of a line of work initiated by Curto and Itskov towards understanding the amount of information contained in the spike trains of hippocampal place cells via topology considerations. Previously, it was established that simply knowing which groups of place cells fire together in an animal's hippocampus is sufficient to extract the global topology of the animal's physical environment. We model a system where collections of place cells group and ungroup according to short-term plasticity rules. In particular, we obtain the surprising result that in experiments with spurious firing, the accuracy of the extracted topological information decreases with the persistence (beyond a certain regime) of the cell groups. This suggests that synaptic transience, or forgetting, is a mechanism by which the brain counteracts the effects of spurious place cell activity

    Mixed Reality Architecture: a dynamic architectural topology

    Get PDF
    Architecture can be shown to structure patterns of co-presence and in turn to be structured itself by the rules and norms of the society present within it. This two-way relationship exists in a surprisingly stable framework, as fundamental changes to buildings are slow and costly. At the same time, change within organisations is increasingly rapid and buildings are used to accommodate some of that change. This adaptation can be supported by the use of telecommunication technologies, overcoming the need for co-presence during social interaction. However, often this results in a loss of accountability or ‘civic legibility’, as the link between physical location and social activity is broken. In response to these considerations, Mixed Reality Architecture (MRA) was developed. MRA links multiple physical spaces across a shared 3D virtual world. We report on the design of MRA, including the key concept of the Mixed Reality Architectural Cell, a novel architectural interface between architectural spaces that are remote to each other. An in-depth study lasting one year and involving six office-based MRACells, used video recordings, the analysis of event logs, diaries and an interview survey. This produced a series of ethnographic vignettes describing social interaction within MRA in detail. In this paper we concentrate on the topological properties of MRA. It can be shown that the dynamic topology of MRA and social interaction taking place within it are fundamentally intertwined. We discuss how topological adjacencies across virtual space change the integration of the architectural spaces that MRA is installed in. We further reflect on how the placement of MRA technology in different parts of an office space (deep or shallow) impacts on the nature of that particular space. Both the above can be shown to influence movement through the building and social interaction taking place within it. These findings are directly relevant to new buildings that need to be designed to accommodate organisational change in future but also to existing building stock that might be very hard to adapt. We are currently expanding the system to new sites and are planning changes to the infrastructure of MRA as well as its interactional interface

    Topological Schemas of Memory Spaces

    Full text link
    Hippocampal cognitive map---a neuronal representation of the spatial environment---is broadly discussed in the computational neuroscience literature for decades. More recent studies point out that hippocampus plays a major role in producing yet another cognitive framework that incorporates not only spatial, but also nonspatial memories---the memory space. However, unlike cognitive maps, memory spaces have been barely studied from a theoretical perspective. Here we propose an approach for modeling hippocampal memory spaces as an epiphenomenon of neuronal spiking activity. First, we suggest that the memory space may be viewed as a finite topological space---a hypothesis that allows treating both spatial and nonspatial aspects of hippocampal function on equal footing. We then model the topological properties of the memory space to demonstrate that this concept naturally incorporates the notion of a cognitive map. Lastly, we suggest a formal description of the memory consolidation process and point out a connection between the proposed model of the memory spaces to the so-called Morris' schemas, which emerge as the most compact representation of the memory structure.Comment: 24 pages, 8 Figures, 1 Suppl. Figur

    Mirror Maps in Chern-Simons Gauge Theory

    Get PDF
    We describe mirror symmetry in N=2 superconformal field theories in terms of a dynamical topology changing process of the principal fiber bundle associated with a topological membrane. We show that the topological symmetries of Calabi-Yau sigma-models can be obtained from discrete geometric transformations of compact Chern-Simons gauge theory coupled to charged matter fields. We demonstrate that the appearence of magnetic monopole-instantons, which interpolate between topologically inequivalent vacua of the gauge theory, implies that the discrete symmetry group of the worldsheet theory is realized kinematically in three dimensions as the magnetic flux symmetry group. From this we construct the mirror map and show that it corresponds to the interchange of topologically non-trivial matter field and gauge degrees of freedom. We also apply the mirror transformation to the mean field theory of the quantum Hall effect. We show that it maps the Jain hierarchy into a new hierarchy of states in which the lowest composite fermions have the same filling fractions.Comment: 40 pages LaTeX, 4 postscript files, uses psfig.sty; minor textual changes, typos corrected, references adde

    Characterizing the Shape of Activation Space in Deep Neural Networks

    Full text link
    The representations learned by deep neural networks are difficult to interpret in part due to their large parameter space and the complexities introduced by their multi-layer structure. We introduce a method for computing persistent homology over the graphical activation structure of neural networks, which provides access to the task-relevant substructures activated throughout the network for a given input. This topological perspective provides unique insights into the distributed representations encoded by neural networks in terms of the shape of their activation structures. We demonstrate the value of this approach by showing an alternative explanation for the existence of adversarial examples. By studying the topology of network activations across multiple architectures and datasets, we find that adversarial perturbations do not add activations that target the semantic structure of the adversarial class as previously hypothesized. Rather, adversarial examples are explainable as alterations to the dominant activation structures induced by the original image, suggesting the class representations learned by deep networks are problematically sparse on the input space
    corecore