506 research outputs found

    Inductive vs transductive inference, global vs local models: SVM, TSVM, and SVMT for gene expression classification problems

    Get PDF
    This paper compares inductive-, versus transductive modeling, and also global-, versus local models with the use of SVM for gene expression classification problems. SVM are used in their three variants - inductive SVM, transductive SVM (TSVM), and SVM tree (SVMT) -the last two techniques being recently introduced by the authors. The problem of gene expression classification is used for illustration and four benchmark data sets are used to compare the different SVM methods. The TSVM outperforms the inductive SVM models applied on a small to medium variable (gene) set and a small to medium sample set, while SVMT is superior when the problem is defined with a large data set, or - a large set of variables (e.g. 7,000 genes, with little or no variable pre-selection)

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    A review of smart homes in healthcare

    Get PDF
    The technology of Smart Homes (SH), as an instance of ambient assisted living technologies, is designed to assist the homes’ residents accomplishing their daily-living activities and thus having a better quality of life while preserving their privacy. A SH system is usually equipped with a collection of inter-related software and hardware components to monitor the living space by capturing the behaviour of the resident and understanding his activities. By doing so the system can inform about risky situations and take actions on behalf of the resident to his satisfaction. The present survey will address technologies and analysis methods and bring examples of the state of the art research studies in order to provide background for the research community. In particular, the survey will expose infrastructure technologies such as sensors and communication platforms along with artificial intelligence techniques used for modeling and recognizing activities. A brief overview of approaches used to develop Human–Computer interfaces for SH systems is given. The survey also highlights the challenges and research trends in this area

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF
    • …
    corecore