4,998 research outputs found

    Brisa: combining efficiency and reliability in epidemic data dissemination

    Get PDF
    There is an increasing demand for efficient and robust systems able to cope with today's global needs for intensive data dissemination, e.g., media content or news feeds. Unfortunately, traditional approaches tend to focus on one end of the efficiency/robustness design spectrum, by either leveraging rigid structures such as trees to achieve efficient distribution, or using loosely-coupled epidemic protocols to obtain robustness. In this paper we present BRISA, a hybrid approach combining the robustness of epidemic-based dissemination with the effi- ciency of tree-based structured approaches. This is achieved by having dissemination structures such as trees implicitly emerge from an underlying epidemic substrate by a judicious selection of links. These links are chosen with local knowledge only and in such a way that the completeness of data dissemination is not compromised, i.e., the resulting structure covers all nodes. Failures are treated as an integral part of the system as the dissemination structures can be promptly compensated and repaired thanks to the underlying epidemic substrate. Besides presenting the protocol design, we conduct an extensive evaluation in a real environment, analyzing the effectiveness of the structure creation mechanism and its robustness under faults and churn. Results confirm BRISA as an efficient and robust approach to data dissemination in the large scale.This work was supported in part by the Swiss National Foundation under agreement number 200021-127271/1 and by the Portuguese Science Foundation (FCT) grants SFRH/BD/62380/2009 and PTDC/EIA-CCO/115570/200

    Overlay networks for smart grids

    Get PDF

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    GLive: The Gradient overlay as a market maker for mesh-based P2P live streaming

    Get PDF
    Peer-to-Peer (P2P) live video streaming over the Internet is becoming increasingly popular, but it is still plagued by problems of high playback latency and intermittent playback streams. This paper presents GLive, a distributed market-based solution that builds a mesh overlay for P2P live streaming. The mesh overlay is constructed such that (i) nodes with increasing upload bandwidth are located closer to the media source, and (ii) nodes with similar upload bandwidth become neighbours. We introduce a market-based approach that matches nodes willing and able to share the stream with one another. However, market-based approaches converge slowly on random overlay networks, and we improve the rate of convergence by adapting our market-based algorithm to exploit the clustering of nodes with similar upload bandwidths in our mesh overlay. We address the problem of free-riding through nodes preferentially uploading more of the stream to the best uploaders. We compare GLive with our previous tree-based streaming protocol, Sepidar, and NewCoolstreaming in simulation, and our results show significantly improved playback continuity and playback latency
    corecore