790 research outputs found

    3D ICS with Optical Interconnections

    Get PDF

    MFPA: Mixed-Signal Field Programmable Array for Energy-Aware Compressive Signal Processing

    Get PDF
    Compressive Sensing (CS) is a signal processing technique which reduces the number of samples taken per frame to decrease energy, storage, and data transmission overheads, as well as reducing time taken for data acquisition in time-critical applications. The tradeoff in such an approach is increased complexity of signal reconstruction. While several algorithms have been developed for CS signal reconstruction, hardware implementation of these algorithms is still an area of active research. Prior work has sought to utilize parallelism available in reconstruction algorithms to minimize hardware overheads; however, such approaches are limited by the underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric specifically designed for implementation of CS data sampling and signal reconstruction. The resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving square/square root operations required for calculating vector norms, 2) digital functional blocks which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication operations. The various functional blocks are connected via a global interconnect and spin-based analog-to-digital converters. Simulation results demonstrate significant energy and area benefits compared to equivalent CMOS digital implementations for each of the functional blocks used: this includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless lookup tables, and roughly 97% reduction in transistor count for a multiplier built using components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction compared to CMOS when used to implement CS reconstruction, in addition to latency improvements

    Low-Power Reconfigurable Sensing Circuitry for the Internet-of-Things Paradigm

    Get PDF
    With ubiquitous wireless communication via Wi-Fi and nascent 5th Generation mobile communications, more devices -- both smart and traditionally dumb -- will be interconnected than ever before. This burgeoning trend is referred to as the Internet-of-Things. These new sensing opportunities place a larger burden on the underlying circuitry that must operate on finite battery power and/or within energy-constrained environments. New developments of low-power reconfigurable analog sensing platforms like field-programmable analog arrays (FPAAs) present an attractive sensing solution by processing data in the analog domain while staying flexible in design. This work addresses some of the contemporary challenges of low-power wireless sensing via traditional application-specific sensing and with FPAAs. A large emphasis is placed on furthering the development of FPAAs by making them more accessible to designers without a strong integrated-circuit background -- much like FPGAs have done for digital designers

    Nonphotolithographic nanoscale memory density prospects

    Get PDF
    Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations

    Large scale reconfigurable analog system design enabled through floating-gate transistors

    Get PDF
    This work is concerned with the implementation and implication of non-volatile charge storage on VLSI system design. To that end, the floating-gate pFET (fg-pFET) is considered in the context of large-scale arrays. The programming of the element in an efficient and predictable way is essential to the implementation of these systems, and is thus explored. The overhead of the control circuitry for the fg-pFET, a key scalability issue, is examined. A light-weight, trend-accurate model is absolutely necessary for VLSI system design and simulation, and is also provided. Finally, several reconfigurable and reprogrammable systems that were built are discussed.Ph.D.Committee Chair: Hasler, Paul E.; Committee Member: Anderson, David V.; Committee Member: Ayazi, Farrokh; Committee Member: Degertekin, F. Levent; Committee Member: Hunt, William D

    Quantum-dot Cellular Automata: Review Paper

    Get PDF
    Quantum-dot Cellular Automata (QCA) is one of the most important discoveries that will be the successful alternative for CMOS technology in the near future. An important feature of this technique, which has attracted the attention of many researchers, is that it is characterized by its low energy consumption, high speed and small size compared with CMOS.  Inverter and majority gate are the basic building blocks for QCA circuits where it can design the most logical circuit using these gates with help of QCA wire. Due to the lack of availability of review papers, this paper will be a destination for many people who are interested in the QCA field and to know how it works and why it had taken lots of attention recentl

    Hybrid FPGA: Architecture and Interface

    No full text
    Hybrid FPGAs (Field Programmable Gate Arrays) are composed of general-purpose logic resources with different granularities, together with domain-specific coarse-grained units. This thesis proposes a novel hybrid FPGA architecture with embedded coarse-grained Floating Point Units (FPUs) to improve the floating point capability of FPGAs. Based on the proposed hybrid FPGA architecture, we examine three aspects to optimise the speed and area for domain-specific applications. First, we examine the interface between large coarse-grained embedded blocks (EBs) and fine-grained elements in hybrid FPGAs. The interface includes parameters for varying: (1) aspect ratio of EBs, (2) position of the EBs in the FPGA, (3) I/O pins arrangement of EBs, (4) interconnect flexibility of EBs, and (5) location of additional embedded elements such as memory. Second, we examine the interconnect structure for hybrid FPGAs. We investigate how large and highdensity EBs affect the routing demand for hybrid FPGAs over a set of domain-specific applications. We then propose three routing optimisation methods to meet the additional routing demand introduced by large EBs: (1) identifying the best separation distance between EBs, (2) adding routing switches on EBs to increase routing flexibility, and (3) introducing wider channel width near the edge of EBs. We study and compare the trade-offs in delay, area and routability of these three optimisation methods. Finally, we employ common subgraph extraction to determine the number of floating point adders/subtractors, multipliers and wordblocks in the FPUs. The wordblocks include registers and can implement fixed point operations. We study the area, speed and utilisation trade-offs of the selected FPU subgraphs in a set of floating point benchmark circuits. We develop an optimised coarse-grained FPU, taking into account both architectural and system-level issues. Furthermore, we investigate the trade-offs between granularities and performance by composing small FPUs into a large FPU. The results of this thesis would help design a domain-specific hybrid FPGA to meet user requirements, by optimising for speed, area or a combination of speed and area

    Design Disjunction for Resilient Reconfigurable Hardware

    Get PDF
    Contemporary reconfigurable hardware devices have the capability to achieve high performance, power efficiency, and adaptability required to meet a wide range of design goals. With scaling challenges facing current complementary metal oxide semiconductor (CMOS), new concepts and methodologies supporting efficient adaptation to handle reliability issues are becoming increasingly prominent. Reconfigurable hardware and their ability to realize self-organization features are expected to play a key role in designing future dependable hardware architectures. However, the exponential increase in density and complexity of current commercial SRAM-based field-programmable gate arrays (FPGAs) has escalated the overhead associated with dynamic runtime design adaptation. Traditionally, static modular redundancy techniques are considered to surmount this limitation; however, they can incur substantial overheads in both area and power requirements. To achieve a better trade-off among performance, area, power, and reliability, this research proposes design-time approaches that enable fine selection of redundancy level based on target reliability goals and autonomous adaptation to runtime demands. To achieve this goal, three studies were conducted: First, a graph and set theoretic approach, named Hypergraph-Cover Diversity (HCD), is introduced as a preemptive design technique to shift the dominant costs of resiliency to design-time. In particular, union-free hypergraphs are exploited to partition the reconfigurable resources pool into highly separable subsets of resources, each of which can be utilized by the same synthesized application netlist. The diverse implementations provide reconfiguration-based resilience throughout the system lifetime while avoiding the significant overheads associated with runtime placement and routing phases. Evaluation on a Motion-JPEG image compression core using a Xilinx 7-series-based FPGA hardware platform has demonstrated the potential of the proposed FT method to achieve 37.5% area saving and up to 66% reduction in power consumption compared to the frequently-used TMR scheme while providing superior fault tolerance. Second, Design Disjunction based on non-adaptive group testing is developed to realize a low-overhead fault tolerant system capable of handling self-testing and self-recovery using runtime partial reconfiguration. Reconfiguration is guided by resource grouping procedures which employ non-linear measurements given by the constructive property of f-disjunctness to extend runtime resilience to a large fault space and realize a favorable range of tradeoffs. Disjunct designs are created using the mosaic convergence algorithm developed such that at least one configuration in the library evades any occurrence of up to d resource faults, where d is lower-bounded by f. Experimental results for a set of MCNC and ISCAS benchmarks have demonstrated f-diagnosability at the individual slice level with average isolation resolution of 96.4% (94.4%) for f=1 (f=2) while incurring an average critical path delay impact of only 1.49% and area cost roughly comparable to conventional 2-MR approaches. Finally, the proposed Design Disjunction method is evaluated as a design-time method to improve timing yield in the presence of large random within-die (WID) process variations for application with a moderately high production capacity
    • …
    corecore