1,392 research outputs found

    Implementation of Load Balanced Data Gathering of Nodes in Wireless Sensor Network

    Get PDF
    Data Gathering is a basic task in Wireless Sensor Networks (WSNs). Data gathering trees capable of performing aggregation operations are also referred to as Data Aggregation Trees (DATs). Recent work focus on constructing DATs according to different user requirements under the Deterministic Network Model (DNM). However, due to the existence of many probabilistic empty links in WSNs, it is more practical to obtain a DAT under the realistic Probabilistic Network Model (PNM). Moreover, the load-balance factor is neglected when constructing DATs in current literatures. Therefore, it is focused on constructing a Load-Balanced Data Aggregation Tree (LBDAT) under the PNM.In this paper, we did simulation of the same as above stated WSN in NS2 network simulator. DOI: 10.17762/ijritcc2321-8169.15081

    Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network. Moreover, Minimum-sized Connected Dominating Set (MCDS) has become a well-known approach for constructing a Virtual Backbone (VB) to alleviate the broadcasting storm for efficient routing in WSNs extensively. However, no work considers the load-balance factor of CDSsin WSNs. In this dissertation, we first propose a new concept — the Load-Balanced CDS (LBCDS) and a new problem — the Load-Balanced Allocate Dominatee (LBAD) problem. Consequently, we propose a two-phase method to solve LBCDS and LBAD one by one and a one-phase Genetic Algorithm (GA) to solve the problems simultaneously. Secondly, since there is no performance ratio analysis in previously mentioned work, three problems are investigated and analyzed later. To be specific, the MinMax Degree Maximal Independent Set (MDMIS) problem, the Load-Balanced Virtual Backbone (LBVB) problem, and the MinMax Valid-Degree non Backbone node Allocation (MVBA) problem. Approximation algorithms and comprehensive theoretical analysis of the approximation factors are presented in the dissertation. On the other hand, in the current related literature, networks are deterministic where two nodes are assumed either connected or disconnected. In most real applications, however, there are many intermittently connected wireless links called lossy links, which only provide probabilistic connectivity. For WSNs with lossy links, we propose a Stochastic Network Model (SNM). Under this model, we measure the quality of CDSs using CDS reliability. In this dissertation, we construct an MCDS while its reliability is above a preset applicationspecified threshold, called Reliable MCDS (RMCDS). We propose a novel Genetic Algorithm (GA) with immigrant schemes called RMCDS-GA to solve the RMCDS problem. Finally, we apply the constructed LBCDS to a practical application under the realistic SNM model, namely data aggregation. To be specific, a new problem, Load-Balanced Data Aggregation Tree (LBDAT), is introduced finally. Our simulation results show that the proposed algorithms outperform the existing state-of-the-art approaches significantly

    Energy Efficient Ant Colony Algorithms for Data Aggregation in Wireless Sensor Networks

    Get PDF
    In this paper, a family of ant colony algorithms called DAACA for data aggregation has been presented which contains three phases: the initialization, packet transmission and operations on pheromones. After initialization, each node estimates the remaining energy and the amount of pheromones to compute the probabilities used for dynamically selecting the next hop. After certain rounds of transmissions, the pheromones adjustment is performed periodically, which combines the advantages of both global and local pheromones adjustment for evaporating or depositing pheromones. Four different pheromones adjustment strategies are designed to achieve the global optimal network lifetime, namely Basic-DAACA, ES-DAACA, MM-DAACA and ACS-DAACA. Compared with some other data aggregation algorithms, DAACA shows higher superiority on average degree of nodes, energy efficiency, prolonging the network lifetime, computation complexity and success ratio of one hop transmission. At last we analyze the characteristic of DAACA in the aspects of robustness, fault tolerance and scalability.Comment: To appear in Journal of Computer and System Science

    Secure and Energy Efficient Data Aggregation Technique for Cluster Based Wireless Sensor Network

    Get PDF
    In the past few years secure transmission of data along with efficiency is a serious issue for wireless sensor networks (WSNs).Clustering is a powerful and convenient way to enhance performance of the WSNs system. In this project work, a secure transmission of data for cluster-based WSNs (CWSNs) is studied, where the clusters are formed dynamically and infrequently. Basically protocols for CWSNs, called SET-IBS (Identity-Based digital Signature)scheme and SET-IBOOS (Identity-Based Online / Offline digital Signature)scheme, correspondingly. In SET-IBS, security relies on the hardness of the Dill-Hellman difficulty in the pairing area. Data aggregation is the process of abbreviation and combining sensor data in order to reduce the amount of data transmission in the network. This paper investigates the relationship between security and data aggregation process in wireless sensor networks. In this paper propose SET-IBS and data aggregation techniques for secure and efficient data transmission. For energy consumption using DRINA algorithm. DRINA means Data Routing for In-Network Aggregation, that has some key aspects such as high aggregation rate, a reduced number of messages for setting up a routing

    Sencar Based Load Balanced Clustering With Mobile Data Gathering In Wireless Sensor Networks

    Get PDF
    The wireless sensor networks consist of static sensors, which can be deployed in a wide environment for monitoring applications. While transmitting the data from source to static sink, the amount of energy consumption of the sensor node is high. This results in reduced lifetime of the network. Some of the WSN architectures have been proposed based on Mobile Elements such as three-layer framework is for mobile data collection, which includes the sensor layer, cluster head layer, and mobile collector layer (called SenCar layer). This framework employs distributed load balanced clustering and dual data uploading, it is referred to as LBC-DDU.In the sensor layer a distributed load balanced clustering algorithm is used for sensors to self-organize themselves into clusters. The cluster head layer use inter-cluster transmission range it is carefully chosen to guarantee the connectivity among the clusters. Multiple cluster heads within a cluster cooperate with each other to perform energy-saving in the inter-cluster communications. Through this transmissions cluster head information is send to the SenCar for its moving trajectory planning.This is done by utilizing multi-user multiple-input and multiple-output (MU-MIMO) technique. Then the results show each cluster has at most two cluster heads. LBC-DDU achieves higher energy saving per node and energy saving on cluster heads comparing with data collection through multi-hop relay to the static data sinks

    Multi-Channel Scheduling for Fast Convergecast in Wireless Sensor Networks

    Get PDF
    We explore the following fundamental question - how fast can information be collected from a wireless sensor network? We consider a number of design parameters such as, power control, time and frequency scheduling, and routing. There are essentially two factors that hinder efficient data collection - interference and the half-duplex single-transceiver radios. We show that while power control helps in reducing the number of transmission slots to complete a convergecast under a single frequency channel, scheduling transmissions on different frequency channels is more efficient in mitigating the effects of interference (empirically, 6 channels suffice for most 100-node networks). With these observations, we define a receiver-based channel assignment problem, and prove it to be NP-complete on general graphs. We then introduce a greedy channel assignment algorithm that efficiently eliminates interference, and compare its performance with other existing schemes via simulations. Once the interference is completely eliminated, we show that with half-duplex single-transceiver radios the achievable schedule length is lower-bounded by max(2nk − 1,N), where nk is the maximum number of nodes on any subtree and N is the number of nodes in the network. We modify an existing distributed time slot assignment algorithm to achieve this bound when a suitable balanced routing scheme is employed. Through extensive simulations, we demonstrate that convergecast can be completed within up to 50% less time slots, in 100-node networks, using multiple channels as compared to that with single-channel communication. Finally, we also demonstrate further improvements that are possible when the sink is equipped with multiple transceivers or when there are multiple sinks to collect data

    A network-aware framework for energy-efficient data acquisition in wireless sensor networks

    Get PDF
    Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN

    Optimized query routing trees for wireless sensor networks

    Get PDF
    In order to process continuous queries over Wireless Sensor Networks (WSNs), sensors are typically organized in a Query Routing Tree (denoted as T) that provides each sensor with a path over which query results can be transmitted to the querying node. We found that current methods deployed in predominant data acquisition systems construct T in a sub-optimal manner which leads to significant waste of energy. In particular, since T is constructed in an ad hoc manner there is no guarantee that a given query workload will be distributed equally among all sensors. That leads to data collisions which represent a major source of energy waste. Additionally, current methods only provide a topological-based method, rather than a query-based method, to define the interval during which a sensing device should enable its transceiver in order to collect the query results from its children. We found that this imposes an order of magnitude increase in energy consumption. In this paper we present MicroPulse+, a novel framework for minimizing the consumption of energy during data acquisition in WSNs. MicroPulse+ continuously optimizes the operation of T by eliminating data transmission and data reception inefficiencies using a collection of in-network algorithms. In particular, MicroPulse+ introduces: (i) the Workload-Aware Routing Tree (WART) algorithm, which is established on profiling recent data acquisition activity and on identifying the bottlenecks using an in-network execution of the critical path method; and (ii) the Energy-driven Tree Construction (ETC) algorithm, which balances the workload among nodes and minimizes data collisions. We show through micro-benchmarks on the CC2420 radio chip and trace-driven experimentation with real datasets from Intel Research and UC-Berkeley that MicroPulse+ provides significant energy reductions under a variety of conditions thus prolonging the longevity of a wireless sensor network

    MAXIMIZE THE LIFETIME OF SENSOR NETWORK BY LOAD BALANCING USING TREE TOPOLOGY

    Get PDF
    In many wireless sensor networks due to the limited energy of sensor nodes energy conservation is one of the most important challenges. To enhance the lifetime of the network emphasis is given to design energy efficient routing algorithms. In WSN, sensor nodes which are nearer to the base station having a task of collecting data for the entire area and send to the base station. This node has an additional load and depletes its energy faster. This paper addresses the problem of lifetime maximization by load balancing. This paper proposes energy efficient load balanced data collection algorithm considering different network parameter (e.g., density, degree). In this method, Data collection tree topology is built at the sink node. Performance of the proposed algorithm is evaluated by considering various parameters like topology, availability of resources and the energy utilization of nodes in different paths of the tree, which may vary and ultimately impacts the overall network lifetime. Sensor nodes are switched from their original path to other based on the load and it reduces communication overhead

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial
    corecore