19,444 research outputs found

    A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

    Full text link
    In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the "best MM-terms" based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have been successful in achieving this, with a traditional construction that relies on the solution to a Knapsack problem: only the most profitable hierarchical surpluses are added to the SG. However, this approach requires additional sharp estimates related to the size of the analytic region and the norm of the interpolation operator, i.e., the Lebesgue constant. Instead, we present an iterative SG procedure that adaptively refines an estimate of the region and accounts for the effects of the Lebesgue constant. Our approach does not require any a priori knowledge of the analyticity or operator norm, is easily generalized to both affine and non-affine analytic functions, and can be applied to sparse grids build from one dimensional rules with arbitrary growth of the number of nodes. In several numerical examples, we utilize our dynamically adaptive SG to interpolate quantities of interest related to the solutions of parametrized elliptic and hyperbolic PDEs, and compare the performance of our quasi-optimal interpolant to several alternative SG schemes

    Accelerating Asymptotically Exact MCMC for Computationally Intensive Models via Local Approximations

    Get PDF
    We construct a new framework for accelerating Markov chain Monte Carlo in posterior sampling problems where standard methods are limited by the computational cost of the likelihood, or of numerical models embedded therein. Our approach introduces local approximations of these models into the Metropolis-Hastings kernel, borrowing ideas from deterministic approximation theory, optimization, and experimental design. Previous efforts at integrating approximate models into inference typically sacrifice either the sampler's exactness or efficiency; our work seeks to address these limitations by exploiting useful convergence characteristics of local approximations. We prove the ergodicity of our approximate Markov chain, showing that it samples asymptotically from the \emph{exact} posterior distribution of interest. We describe variations of the algorithm that employ either local polynomial approximations or local Gaussian process regressors. Our theoretical results reinforce the key observation underlying this paper: when the likelihood has some \emph{local} regularity, the number of model evaluations per MCMC step can be greatly reduced without biasing the Monte Carlo average. Numerical experiments demonstrate multiple order-of-magnitude reductions in the number of forward model evaluations used in representative ODE and PDE inference problems, with both synthetic and real data.Comment: A major update of the theory and example

    Far-Field Compression for Fast Kernel Summation Methods in High Dimensions

    Full text link
    We consider fast kernel summations in high dimensions: given a large set of points in dd dimensions (with d≫3d \gg 3) and a pair-potential function (the {\em kernel} function), we compute a weighted sum of all pairwise kernel interactions for each point in the set. Direct summation is equivalent to a (dense) matrix-vector multiplication and scales quadratically with the number of points. Fast kernel summation algorithms reduce this cost to log-linear or linear complexity. Treecodes and Fast Multipole Methods (FMMs) deliver tremendous speedups by constructing approximate representations of interactions of points that are far from each other. In algebraic terms, these representations correspond to low-rank approximations of blocks of the overall interaction matrix. Existing approaches require an excessive number of kernel evaluations with increasing dd and number of points in the dataset. To address this issue, we use a randomized algebraic approach in which we first sample the rows of a block and then construct its approximate, low-rank interpolative decomposition. We examine the feasibility of this approach theoretically and experimentally. We provide a new theoretical result showing a tighter bound on the reconstruction error from uniformly sampling rows than the existing state-of-the-art. We demonstrate that our sampling approach is competitive with existing (but prohibitively expensive) methods from the literature. We also construct kernel matrices for the Laplacian, Gaussian, and polynomial kernels -- all commonly used in physics and data analysis. We explore the numerical properties of blocks of these matrices, and show that they are amenable to our approach. Depending on the data set, our randomized algorithm can successfully compute low rank approximations in high dimensions. We report results for data sets with ambient dimensions from four to 1,000.Comment: 43 pages, 21 figure

    Improving Efficiency and Scalability of Sum of Squares Optimization: Recent Advances and Limitations

    Full text link
    It is well-known that any sum of squares (SOS) program can be cast as a semidefinite program (SDP) of a particular structure and that therein lies the computational bottleneck for SOS programs, as the SDPs generated by this procedure are large and costly to solve when the polynomials involved in the SOS programs have a large number of variables and degree. In this paper, we review SOS optimization techniques and present two new methods for improving their computational efficiency. The first method leverages the sparsity of the underlying SDP to obtain computational speed-ups. Further improvements can be obtained if the coefficients of the polynomials that describe the problem have a particular sparsity pattern, called chordal sparsity. The second method bypasses semidefinite programming altogether and relies instead on solving a sequence of more tractable convex programs, namely linear and second order cone programs. This opens up the question as to how well one can approximate the cone of SOS polynomials by second order representable cones. In the last part of the paper, we present some recent negative results related to this question.Comment: Tutorial for CDC 201

    Stochastic collocation on unstructured multivariate meshes

    Full text link
    Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically "unstructured" collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure
    • …
    corecore