5,407 research outputs found

    PointAtrousGraph: Deep Hierarchical Encoder-Decoder with Point Atrous Convolution for Unorganized 3D Points

    Full text link
    Motivated by the success of encoding multi-scale contextual information for image analysis, we propose our PointAtrousGraph (PAG) - a deep permutation-invariant hierarchical encoder-decoder for efficiently exploiting multi-scale edge features in point clouds. Our PAG is constructed by several novel modules, such as Point Atrous Convolution (PAC), Edge-preserved Pooling (EP) and Edge-preserved Unpooling (EU). Similar with atrous convolution, our PAC can effectively enlarge receptive fields of filters and thus densely learn multi-scale point features. Following the idea of non-overlapping max-pooling operations, we propose our EP to preserve critical edge features during subsampling. Correspondingly, our EU modules gradually recover spatial information for edge features. In addition, we introduce chained skip subsampling/upsampling modules that directly propagate edge features to the final stage. Particularly, our proposed auxiliary loss functions can further improve our performance. Experimental results show that our PAG outperform previous state-of-the-art methods on various 3D semantic perception applications.Comment: 11 pages, 10 figure

    Environmental features of Chinese architectural heritage: the standardization of form in the pursuit of equilibrium with nature

    Get PDF
    We present a scientific discussion about Chinese historical architecture and cultural paradigms in order to analyze the formation of building patterns objectively connected to environmental features. In this regard, we will demonstrate the process of standardization from architectural modules related in different levels of composition around “voids”, onto cosmological urban tissues in harmony with nature. The conclusions show that we can only understand Chinese architectural patterns in relation to Dào or nature, and in turn, they possess profound social and environmental values from which we receive useful lessons to advance towards sustainability in architecture and urban planning. The authors believe that it is critical for China and the world to find a new approach to the building construction industry with an ecological and philosophical background recognizable as “Chinese” and based in its own past. In order to support the information provided in the first part of the article, the authors have conducted an environmental analysis of the traditional Chinese urban layout whose results greatly confirm the initial hypotheses, i.e. the historical fashion of constructing neighborhoods improves conditions of the town in terms of comfort and is able to save energy, thus reducing pernicious change effects
    corecore