3,668 research outputs found

    Identifying features predictive of faculty integrating computation into physics courses

    Full text link
    Computation is a central aspect of 21st century physics practice; it is used to model complicated systems, to simulate impossible experiments, and to analyze mountains of data. Physics departments and their faculty are increasingly recognizing the importance of teaching computation to their students. We recently completed a national survey of faculty in physics departments to understand the state of computational instruction and the factors that underlie that instruction. The data collected from the faculty responding to the survey included a variety of scales, binary questions, and numerical responses. We then used Random Forest, a supervised learning technique, to explore the factors that are most predictive of whether a faculty member decides to include computation in their physics courses. We find that experience using computation with students in their research, or lack thereof and various personal beliefs to be most predictive of a faculty member having experience teaching computation. Interestingly, we find demographic and departmental factors to be less useful factors in our model. The results of this study inform future efforts to promote greater integration of computation into the physics curriculum as well as comment on the current state of computational instruction across the United States

    An E-Learning Semantic Grid for Life science Education

    Get PDF
    There are a lot of life science databases and services on the Internet nowadays, especially in life science e-science. In this paper, we will present an E-Learning Semantic Grid that integrates these resources provided by both teachers and scientists for life science education. It uses domain ontologies to integrate these heterogeneous life science database and service resources, and supports ontology-based e-learning data-sharing and service-coordination for life science teachers and students in an e-learning virtual organization. Our system provides life science students with semantically superior experience in learning activities, and also extends the function of life science e-science. It has a promising future in the domain of life science education

    Sketch-To-Solution: An Exploration of Viscous CFD with Automatic Grids

    Get PDF
    Numerical simulation of the Reynolds-averaged NavierStokes (RANS) equations has become a critical tool for the design of aerospace vehicles. However, the issues that affect the grid convergence of three dimensional RANS solutions are not completely understood, as documented in the AIAA Drag Prediction Workshop series. Grid adaption methods have the potential for increasing the automation and discretization error control of RANS solutions to impact the aerospace design and certification process. The realization of the CFD Vision 2030 Study includes automated management of errors and uncertainties of physics-based, predictive modeling that can set the stage for ensuring a vehicle is in compliance with a regulation or specification by using analysis without demonstration in flight test (i.e., certification or qualification by analysis). For example, the Cart3D inviscid analysis package has automated Cartesian cut-cell gridding with output-based error control. Fueled by recent advances in the fields of anisotropic grid adaptation, error estimation, and geometry modeling, a similar work flow is explored for viscous CFD simulations; where a CFD application engineer provides geometry, boundary conditions, and flow parameters, and the sketch-to-solution process yields a CFD simulation through automatic, error-based, grid adaptation

    Multiscale modeling in biology

    Get PDF
    The 1966 science-fction film Fantastic Voyage captured the public imagination with a clever idea: what fantastic things might we see and do if we could minaturize ourselves and travel through the bloodstream as corpuscles do? (This being Hollywood, the answer was that we'd save a fellow scientist from evildoers.

    TLAD 2010 Proceedings:8th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the eighth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2010), which once again is held as a workshop of BNCOD 2010 - the 27th International Information Systems Conference. TLAD 2010 is held on the 28th June at the beautiful Dudhope Castle at the Abertay University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.This year, the workshop includes an invited talk given by Richard Cooper (of the University of Glasgow) who will present a discussion and some results from the Database Disciplinary Commons which was held in the UK over the academic year. Due to the healthy number of high quality submissions this year, the workshop will also present seven peer reviewed papers, and six refereed poster papers. Of the seven presented papers, three will be presented as full papers and four as short papers. These papers and posters cover a number of themes, including: approaches to teaching databases, e.g. group centered and problem based learning; use of novel case studies, e.g. forensics and XML data; techniques and approaches for improving teaching and student learning processes; assessment techniques, e.g. peer review; methods for improving students abilities to develop database queries and develop E-R diagrams; and e-learning platforms for supporting teaching and learning
    corecore