101 research outputs found

    Constructing APN functions through isotopic shifts

    Get PDF
    Almost perfect nonlinear (APN) functions over fields of characteristic 2 play an important role in cryptography, coding theory and, more generally, mathematics and information theory. In this paper we deduce a new method for constructing APN functions by studying the isotopic equivalence, concept defined for quadratic planar functions in fields of odd characteristic. In particular, we construct a family of quadratic APN functions which provides a new example of an APN mapping over F 29 and includes an example of another APN function x 9 + Tr(x 3 ) over F 28 , known since 2006 and not classified up to now. We conjecture that the conditions for this family are satisfied by infinitely many APN functions.acceptedVersio

    Constructing APN functions through isotopic shifts

    Get PDF
    Almost perfect nonlinear (APN) functions over fields of characteristic 2 play an important role in cryptography, coding theory and, more generally, information theory as well as mathematics. Building new APN families is a challenge which has not been successfully addressed for more than seven years now. The most general known equivalence relation preserving APN property in characteristic 2 is CCZ-equivalence. Extended to general characteristic, it also preserves planarity. In the case of quadratic planar functions, it is a particular case of isotopic equivalence. We apply the idea of isotopic equivalence to transform APN functions in characteristic 2 into other functions, some of which can be APN. We deduce new quadratic APN functions and a new quadratic APN family

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin

    Computational search for isotopic semifields and planar functions in characteristic 3

    Get PDF
    In this thesis, we investigate the possibility of finding new planar functions and corresponding semifields in characteristic 3 by the construction of isotopic semifields from the known families and sporadic instances of planar functions. Using the conditions laid out by Coulter and Henderson, we are able to deduce that a number of the known infinite families can never produce CCZ-inequivalent functions via isotopism. For the remaining families, we computationally investigate the isotopism classes of their instances over finite fields of order 3^n for n ≤ 8. We find previously unknown isotopisms between the semifields corresponding to some of the known planar functions for n = 6 and n = 8. This allows us to refine the known classification of planar functions up to isotopism, and to provide an updated, partial classification up to isotopism over finite fields of order 3^n for n ≤ 8.Masteroppgave i informatikkINF399MAMN-INFMAMN-PRO

    Towards a deeper understanding of APN functions and related longstanding problems

    Get PDF
    This dissertation is dedicated to the properties, construction and analysis of APN and AB functions. Being cryptographically optimal, these functions lack any general structure or patterns, which makes their study very challenging. Despite intense work since at least the early 90's, many important questions and conjectures in the area remain open. We present several new results, many of which are directly related to important longstanding open problems; we resolve some of these problems, and make significant progress towards the resolution of others. More concretely, our research concerns the following open problems: i) the maximum algebraic degree of an APN function, and the Hamming distance between APN functions (open since 1998); ii) the classification of APN and AB functions up to CCZ-equivalence (an ongoing problem since the introduction of APN functions, and one of the main directions of research in the area); iii) the extension of the APN binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}} into an infinite family (open since 2006); iv) the Walsh spectrum of the Dobbertin function (open since 2001); v) the existence of monomial APN functions CCZ-inequivalent to ones from the known families (open since 2001); vi) the problem of efficiently and reliably testing EA- and CCZ-equivalence (ongoing, and open since the introduction of APN functions). In the course of investigating these problems, we obtain i.a. the following results: 1) a new infinite family of APN quadrinomials (which includes the binomial x3+βx36x^3 + \beta x^{36} over F210F_{2^{10}}); 2) two new invariants, one under EA-equivalence, and one under CCZ-equivalence; 3) an efficient and easily parallelizable algorithm for computationally testing EA-equivalence; 4) an efficiently computable lower bound on the Hamming distance between a given APN function and any other APN function; 5) a classification of all quadratic APN polynomials with binary coefficients over F2nF_{2^n} for n≤9n \le 9; 6) a construction allowing the CCZ-equivalence class of one monomial APN function to be obtained from that of another; 7) a conjecture giving the exact form of the Walsh spectrum of the Dobbertin power functions; 8) a generalization of an infinite family of APN functions to a family of functions with a two-valued differential spectrum, and an example showing that this Gold-like behavior does not occur for infinite families of quadratic APN functions in general; 9) a new class of functions (the so-called partially APN functions) defined by relaxing the definition of the APN property, and several constructions and non-existence results related to them.Doktorgradsavhandlin

    On construction and (non)existence of c-(almost) perfect nonlinear functions

    Get PDF
    Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low c-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results.publishedVersio

    On construction and (non)existence of cc-(almost) perfect nonlinear functions

    Full text link
    Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low cc-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results

    A New Family of APN Quadrinomials

    Get PDF
    The binomial B(x) = x 3 +βx 36 (where β is primitive in F 2 2) over F 2 10 is the first known example of an Almost Perfect Nonlinear (APN) function that is not CCZ-equivalent to a power function, and has remained unclassified into any infinite family of APN functions since its discovery in 2006. We generalize this binomial to an infinite family of APN quadrinomials of the form x 3 +a(x 2i+1 )2 k +bx 3·2m +c(x2 i+m+2m ) 2k from which B(x) can be obtained by setting a = β, b = c = 0, i = 3, k = 2. We show that for any dimension n = 2m with m odd and 3 + m,setting(a, b, c)=(β, β 2 , 1) and i =m -2 or i = (m - 2) -1 mod n yields an APN function, and verify that for n = 10 the quadrinomials obtained in this way for i = m - 2 and i = (m - 2) -1 mod n are CCZ-inequivalent to each other, to B(x), and to any other known APN function over F 2 10.acceptedVersio

    Two New Families of Quadratic APN Functions

    Get PDF
    acceptedVersio
    • …
    corecore