2,601 research outputs found

    B-spline based Boundary Method for the Material Point Method

    Get PDF
    Unlike the conventional finite element method, in which the mesh conforms to the material boundary, the material point method (MPM) does not provide a clear interpretation of the boundary. Consequently, difficulties arise when it comes to solving boundary-value problems during MPM simulations, in particular, applying traction (Neumann) and prescribed displacement (inhomogeneous Dirichlet) boundary conditions. However, little attention has been paid to this issue; no literature to date has presented an effective way to model and track boundaries in the MPM. Hence, developing new ways of boundary representation and boundary conditions application in the MPM is the focus of this research. Formulation of the MPM is firstly presented followed by a review on current approaches to this boundary issue, where B-spline interpolation techniques and an implicit boundary method are identified as the methods to be taken forward. Essential knowledge on B-splines is then discussed. After comparing different B-spline interpolation techniques, a local cubic scheme is selected for boundary representation due to its ability to handle sharp corners and its relatively high computational stability. Next, enforcements of the boundary conditions are discussed. Tractions are applied through direct integration over the B-spline boundary and displacements are prescribed via a B-spline based implicit boundary method. Finally, this boundary method is verified through numerical examples, several of which were not possible with previous MPMs. The novelty of this thesis lies in providing a complete methodology on modelling and tracking the boundaries as well as accurately imposing both Neumann and Dirichlet boundary conditions in the MPM

    Parametric modeling for simulation based hypersonic vehicle design

    Get PDF
    The conceptual design stage offers the most opportunity for innovation and the capability to reveal costly design errors early. Integrating high fidelity design and simulation tools into the conceptual design stage enables engineers to develop design variations quickly and affordably. This work focuses primarily on the development and utilization of parametric modeling methods as they apply to a simulation based design process. It will also address the impacts to conceptual design development time. A blended wing-body (BWB) hypersonic wave rider demonstrates how state-of-the-art solid modeling techniques can be coupled to high fidelity CFD analysis codes to perform top down design. Performance trends are identified for several trade study variations which represent a single iteration through the simulation based design process. Performance metrics are based on interpretations from higher level customer, regulatory, business, and other requirements. The process of cascading these requirements down to the component level is the definition of top-down-design. This bidirectional tracing of requirements allows vehicle development to progress in a manner such that any change of the vehicle can be assessed in terms of the overarching requirements

    Tensor B-spline numerical method for PDEs : a high performance approach

    Get PDF
    Solutions of Partial Differential Equations (PDEs) form the basis of many mathematical models in physics and medicine. In this work, a novel Tensor B-spline methodology for numerical solutions of linear second-order PDEs is proposed. The methodology applies the B-spline signal processing framework and computational tensor algebra in order to construct high-performance numerical solvers for PDEs. The method allows high-order approximations, is mesh-free, matrix-free and computationally and memory efficient. The first chapter introduces the main ideas of the Tensor B-spline method, depicts the main contributions of the thesis and outlines the thesis structure. The second chapter provides an introduction to PDEs, reviews the numerical methods for solving PDEs, introduces splines and signal processing techniques with B-splines, and describes tensors and the computational tensor algebra. The third chapter describes the principles of the Tensor B-spline methodology. The main aspects are 1) discretization of the PDE variational formulation via B-spline representation of the solution, the coefficients, and the source term, 2) introduction to the tensor B-spline kernels, 3) application of tensors and computational tensor algebra to the discretized variational formulation of the PDE, 4) tensor-based analysis of the problem structure, 5) derivation of the efficient computational techniques, and 6) efficient boundary processing and numerical integration procedures. The fourth chapter describes 1) different computational strategies of the Tensor B-spline solver and an evaluation of their performance, 2) the application of the method to the forward problem of the Optical Diffusion Tomography and an extensive comparison with the state-of-the-art Finite Element Method on synthetic and real medical data, 3) high-performance multicore CPU- and GPU-based implementations, and 4) the solution of large-scale problems on hardware with limited memory resources

    Isogeometric dual mortar methods for computational contact mechanics

    Get PDF
    International audienceIn recent years, isogeometric analysis (IGA) has received great attention in many fields of computational mechanics research. Especially for computational contact mechanics, an exact and smooth surface representation is highly desirable. As a consequence, many well-known finite e lement m ethods a nd a lgorithms f or c ontact m echanics h ave b een t ransferred t o I GA. I n t he present contribution, the so-called dual mortar method is investigated for both contact mechanics and classical domain decomposition using NURBS basis functions. In contrast to standard mortar methods, the use of dual basis functions for the Lagrange multiplier based on the mathematical concept of biorthogonality enables an easy elimination of the additional Lagrange multiplier degrees of freedom from the global system. This condensed system is smaller in size, and no longer of saddle point type but positive definite. A very simple and commonly used element-wise construction of the dual basis functions is directly transferred to the IGA case. The resulting Lagrange multiplier interpolation satisfies discrete inf–sup stability and biorthogonality, however, the reproduction order is limited to one. In the domain decomposition case, this results in a limitation of the spatial convergence order to O(h 3 /2) in the energy norm, whereas for unilateral contact, due to the lower regularity of the solution, optimal convergence rates are still met. Numerical examples are presented that illustrate these theoretical considerations on convergence rates and compare the newly developed isogeometric dual mortar contact formulation with its standard mortar counterpart as well as classical finite elements based on first and second order Lagrange polynomials

    Smooth representation of thin shells and volume structures for isogeometric analysis

    Get PDF
    The purpose of this study is to develop self-contained methods for obtaining smooth meshes which are compatible with isogeometric analysis (IGA). The study contains three main parts. We start by developing a better understanding of shapes and splines through the study of an image-related problem. Then we proceed towards obtaining smooth volumetric meshes of the given voxel-based images. Finally, we treat the smoothness issue on the multi-patch domains with C1 coupling. Following are the highlights of each part. First, we present a B-spline convolution method for boundary representation of voxel-based images. We adopt the filtering technique to compute the B-spline coefficients and gradients of the images effectively. We then implement the B-spline convolution for developing a non-rigid images registration method. The proposed method is in some sense of “isoparametric”, for which all the computation is done within the B-splines framework. Particularly, updating the images by using B-spline composition promote smooth transformation map between the images. We show the possible medical applications of our method by applying it for registration of brain images. Secondly, we develop a self-contained volumetric parametrization method based on the B-splines boundary representation. We aim to convert a given voxel-based data to a matching C1 representation with hierarchical cubic splines. The concept of the osculating circle is employed to enhance the geometric approximation, where it is done by a single template and linear transformations (scaling, translations, and rotations) without the need for solving an optimization problem. Moreover, we use the Laplacian smoothing and refinement techniques to avoid irregular meshes and to improve mesh quality. We show with several examples that the method is capable of handling complex 2D and 3D configurations. In particular, we parametrize the 3D Stanford bunny which contains irregular shapes and voids. Finally, we propose the B´ezier ordinates approach and splines approach for C1 coupling. In the first approach, the new basis functions are defined in terms of the B´ezier Bernstein polynomials. For the second approach, the new basis is defined as a linear combination of C0 basis functions. The methods are not limited to planar or bilinear mappings. They allow the modeling of solutions to fourth order partial differential equations (PDEs) on complex geometric domains, provided that the given patches are G1 continuous. Both methods have their advantages. In particular, the B´ezier approach offer more degree of freedoms, while the spline approach is more computationally efficient. In addition, we proposed partial degree elevation to overcome the C1-locking issue caused by the over constraining of the solution space. We demonstrate the potential of the resulting C1 basis functions for application in IGA which involve fourth order PDEs such as those appearing in Kirchhoff-Love shell models, Cahn-Hilliard phase field application, and biharmonic problems

    Gradimir Milovanovic - a master in approximation and computation part ii

    Get PDF

    Algebraic level sets for CAD/CAE integration and moving boundary problems

    Get PDF
    Boundary representation (B-rep) of CAD models obtained from solid modeling kernels are commonly used in design, and analysis applications outside the CAD systems. Boolean operations between interacting B-rep CAD models as well as analysis of such multi-body systems are fundamental operations on B-rep geometries in CAD/CAE applications. However, the boundary representation of B-rep solids is, in general, not a suitable representation for analysis operations which lead to CAD/CAE integration challenges due to the need for conversion from B-rep to volumetric approximations. The major challenges include intermediate mesh generation step, capturing CAD features and associated behavior exactly and recurring point containment queries for point classification as inside/outside the solid. Thus, an ideal analysis technique for CAD/CAE integration that can enable direct analysis operations on B-rep CAD models while overcoming the associated challenges is desirable. ^ Further, numerical surface intersection operations are typically necessary for boolean operations on B-rep geometries during the CAD and CAE phases. However, for non-linear geometries, surface intersection operations are non-trivial and face the challenge of simultaneously satisfying the three goals of accuracy, efficiency and robustness. In the class of problems involving multi-body interactions, often an implicit knowledge of the boolean operation is sufficient and explicit intersection computation may not be needed. Such implicit boolean operations can be performed by point containment queries on B-rep CAD models. However, for complex non-linear B-rep geometries, the point containment queries may involve numerical iterative point projection operations which are expensive. Thus, there is a need for inexpensive, non-iterative techniques to enable such implicit boolean operations on B-rep geometries. ^ Moreover, in analysis problems with evolving boundaries (ormoving boundary problems), interfaces or cracks, blending functions are used to enrich the underlying domain with the known behavior on the enriching entity. The blending functions are typically dependent on the distance from the evolving boundaries. For boundaries defined by free form curves or surfaces, the distance fields have to be constructed numerically. This may require either a polytope approximation to the boundary and/or an iterative solution to determine the exact distance to the boundary. ^ In this work a purely algebraic, and computationally efficient technique is described for constructing signed distance measures from Non-Uniform Rational B-Splines (NURBS) boundaries that retain the geometric exactness of the boundaries while eliminating the need for iterative and non-robust distance calculation. The proposed technique exploits the NURBS geometry and algebraic tools of implicitization. Such a signed distance measure, also referred to as the Algebraic Level Sets, gives a volumetric representation of the B-rep geometry constructed by purely non-iterative algebraic operations on the geometry. This in turn enables both the implicit boolean operations and analysis operations on B-rep geometries in CAD/CAE applications. Algebraic level sets ensure exactness of geometry while eliminating iterative numerical computations. Further, a geometry-based analysis technique that relies on hierarchical partition of unity field compositions (HPFC) theory and its extension to enriched field modeling is presented. The proposed technique enables direct analysis of complex physical problems without meshing, thus, integrating CAD and CAE. The developed techniques are demonstrated by constructing algebraic level sets for complex geometries, geometry-based analysis of B-rep CAD models and a variety of fracture examples culminating in the analysis of steady state heat conduction in a solid with arbitrary shaped three-dimensional cracks. ^ The proposed techniques are lastly applied to investigate the risk of fracture in the ultra low-k (ULK) dies due to copper (Cu) wirebonding process. Maximum damage induced in the interlayer dielectric (ILD) stack during the process steps is proposed as an indicator of the reliability risk. Numerical techniques based on enriched isogeometric approximations are adopted to model damage in the ULK stacks using a cohesive damage description. A damage analysis procedure is proposed to conduct damage accumulation studies during Cu wirebonding process. Analysis is carried out to identify weak interfaces and potential sites for crack nucleation as well as damage nucleation patterns. Further, the critical process condition is identified by analyzing the damage induced during the impact and ultrasonic excitation stages. Also, representative ILD stack designs with varying Cu percentage are compared for risk of fracture

    Smooth functions and their use in optical modeling and design

    Get PDF
    Analytical description of unknown smooth optical functions such as optical surface and wavefront phases will have profound importance in optical modeling and design. Polynomial models have been extensively used to describe smooth function. Various forms of polynomials for describing the smooth functions may be considered both in optical modeling and design. In optics, the Zernike polynomials are potential candidates to describe optical surface and wavefront phases. However, they are restrained to specific geometry and suffer from numerical instability, especially for describing complex functions. More recently, spline model functions were also investigated for describing the optical surface shape and wavefront phase
    • …
    corecore