2,793 research outputs found

    Constraints-Preserving Transformation from XML Document Type Definition to Relational Schema

    Full text link

    XML document design via GN-DTD

    Get PDF
    Designing a well-structured XML document is important for the sake of readability and maintainability. More importantly, this will avoid data redundancies and update anomalies when maintaining a large quantity of XML based documents. In this paper, we propose a method to improve XML structural design by adopting graphical notations for Document Type Definitions (GN-DTD), which is used to describe the structure of an XML document at the schema level. Multiples levels of normal forms for GN-DTD are proposed on the basis of conceptual model approaches and theories of normalization. The normalization rules are applied to transform a poorly designed XML document into a well-designed based on normalized GN-DTD, which is illustrated through examples

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    Coupled schema transformation and data conversion for XML and SQL

    Get PDF
    A two-level data transformation consists of a type-level transformation of a data format coupled with value-level transformations of data instances corresponding to that format. We have implemented a system for performing two-level transformations on XML schemas and their corresponding documents, and on SQL schemas and the databases that they describe. The core of the system consists of a combinator library for composing type-changing rewrite rules that preserve structural information and referential constraints. We discuss the implementation of the system’s core library, and of its SQL and XML front-ends in the functional language Haskell. We show how the system can be used to tackle various two-level transformation scenarios, such as XML schema evolution coupled with document migration, and hierarchical-relational data mappings that convert between XML documents and SQL databases.Fundação para a Ciência e a Tecnologia (FCT) - POSI/ICHS/44304/2002

    Managing Schema Change in an Heterogeneous Environment

    Get PDF
    Change is inevitable even for persistent information. Effectively managing change of persistent information, which includes the specification, execution and the maintenance of any derived information, is critical and must be addressed by all database systems. Today, for every data model there exists a well-defined set of change primitives that can alter both the structure (the schema) and the data. Several proposals also exist for incrementally propagating a primitive change to any derived information (or view). However, existing support is lacking in two ways. First, change primitives as presented in literature are very limiting in terms of their capabilities allowing users to simply add or remove schema elements. More complex types of changes such the merging or splitting of schema elements are not supported in a principled manner. Second, algorithms for maintaining derived information often do not account for the potential heterogeneity between the source and the target. The goal of this dissertation is to provide solutions that address these two key issues. The first part of this dissertation addresses the challenge of expressing a rich complex set of changes. We propose the SERF (Schema Evolution through an Extensible, Re-usable and Flexible) framework that allows users to perform a wide range of complex user-defined schema transformations. Our approach combines existing schema evolution primitives using OQL (object query language) as the glue logic. Within the context of this work, we look at the different domains in which SERF can be applied, including web site management. To further enrich our framework, we also investigate the optimization and verification of SERF transformations. The second part of this dissertation addresses the problem of maintaining views in the face of source changes when the source and the view are not in the same data model. With today\u27s increasing heterogeneity in information structure, it is critical that maintenance of views addresses the data model boundaries. However, view definitions that go across data models are limited to hard-coded algorithms, thereby making it difficult to develop general maintenance algorithms. We provide a two-step solution for this problem. We have developed a cross algebra, that defines views such that there is no restriction that forces the view and the source data models to be the same. We then define update propagation algorithms that can propagate changes from source to target irrespective of the exact translation and the data models. We validate our ideas by applying them to translation and change propagation between the XML and relational data models

    Data integration for XML based on semantic knowledge

    Get PDF
    Reconciling of knowledge from multiple heterogeneous data sources has been a major focus of database research for more than a decade.As a standard for exchanging business data on the WWW, XML should provide the ability of expressing data and semantics among them. Since most of application data are stored in relational databases due to its popularity and rich development experiences over it.Therefore, how to provide a proper mapping approach from relational model to XML model becomes the major research problem in the field of current information exchanging, sharing and integration..The model needs to be integrated and at the same time maintain the semantic knowledge among the data. The aim of this paper is to provide an overview for XML based data integration on semantic knowledge.At the end of the paper, we review some methodologies from existing literature

    Potentially Polluting Marine Sites GeoDB: An S-100 Geospatial Database as an Effective Contribution to the Protection of the Marine Environment

    Get PDF
    Potentially Polluting Marine Sites (PPMS) are objects on, or areas of, the seabed that may release pollution in the future. A rationale for, and design of, a geospatial database to inventory and manipu-late PPMS is presented. Built as an S-100 Product Specification, it is specified through human-readable UML diagrams and implemented through machine-readable GML files, and includes auxiliary information such as pollution-control resources and potentially vulnerable sites in order to support analyses of the core data. The design and some aspects of implementation are presented, along with metadata requirements and structure, and a perspective on potential uses of the database

    A Framework for Generating Query Language Code from OCL Invariants

    Get PDF
    The semantical integrity of business data is of great importance for the implementation of business applications. Model-Driven Software Development (MDSD) allows for specifying the relevant domain concepts, their interrelations and their concise semantics using a plethora of modelling languages. Since model transformations enable an automatic mapping of platform independent models (PIMs) to platform specific models (PSMs) and code, it is reasonable to utilise them to derive data schemas and integrity rules for business applications. Most current approaches only focus on transforming structural descriptions of software systems while semantical specifications are neglected. However, to preserve also the semantical integrity rules we propose a Query Code Generation Framework that enables Model-Driven Integrity Engineering. This framework allows for mapping UML models to arbitrary data schemas and for mapping OCL invariants to sentences in corresponding declarative query languages, enforcing semantical data integrity on implementation level. This supersedes the manual translation of integrity constraints and, thus, decreases development costs while increasing software quality
    • …
    corecore