2,820 research outputs found

    Assistive trajectories for human-in-the-loop mobile robotic platforms

    Get PDF
    Autonomous and semi-autonomous smoothly interruptible trajectories are developed which are highly suitable for application in tele-operated mobile robots, operator on-board military mobile ground platforms, and other mobility assistance platforms. These trajectories will allow a navigational system to provide assistance to the operator in the loop, for purpose built robots or remotely operated platforms. This will allow the platform to function well beyond the line-of-sight of the operator, enabling remote operation inside a building, surveillance, or advanced observations whilst keeping the operator in a safe location. In addition, on-board operators can be assisted to navigate without collision when distracted, or under-fire, or when physically disabled by injury

    Proscriptive Bayesian Programming Application for Collision Avoidance

    Get PDF
    Evolve safely in an unchanged environment and possibly following an optimal trajectory is one big challenge presented by situated robotics research field. Collision avoidance is a basic security requirement and this paper proposes a solution based on a probabilistic approach called Bayesian Programming. This approach aims to deal with the uncertainty, imprecision and incompleteness of the information handled. Some examples illustrate the process of embodying the programmer preliminary knowledge into a Bayesian program and experimental results of these examples implementation in an electrical vehicle are described and commented. Some videos illustrating these experiments can be found at http://www-laplace.imag.fr

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation solves the collision avoidance problem for single- and multi-robot systems where dynamic effects are significant. In many robotic systems (e.g., highly maneuverable and agile unmanned aerial vehicles) the dynamics cannot be ignored and collision avoidance schemes based on kinematic models can result in collisions or provide limited performance, especially at high operating speeds. Herein, real-time, model-based collision avoidance algorithms that explicitly consider the robots' dynamics and perform real-time input changes to alter the trajectory and steer the robot away from potential collisions are developed, implemented, and verified in simulations and physical experiments. Such algorithms are critical in applications where a high degree of autonomy and performance are needed, for example in robot-assisted first response where aerial and/or mobile ground robots are required to maneuver quickly through cluttered and dangerous environments in search of survivors. Firstly, the research extends reciprocal collision avoidance to robots with dynamics by unifying previous approaches to reciprocal collision avoidance under a single, generalized representation using control obstacles. In fact, it is shown how velocity obstacles, acceleration velocity obstacles, continuous control obstacles, and linear quadratic regulator (LQR)-obstacles are special instances of the generalized framework. Furthermore, an extension of control obstacles to general reciprocal collision avoidance for nonlinear, nonhomogeneous systems where the robots may have different state spaces and different nonlinear equations of motion from one another is described. Both simulations and physical experiments are provided for a combination of differential-drive, differential-drive with a trailer, and car-like robots to demonstrate that the approach is capable of letting a nonhomogeneous group of robots with nonlinear equations of motion safely avoid collisions at real-time computation rates. Secondly, the research develops a stochastic collision avoidance algorithm for a tele-operated unmanned aerial vehicle (UAV) that considers uncertainty in the robot's dynamics model and the obstacles' position as measured from sensors. The model-based automatic collision avoidance algorithm is implemented on a custom-designed quadcopter UAV system with on-board computation and the sensor data are processed using a split-and-merge segmentation algorithm and an approximate Minkowski difference. Flight tests are conducted to validate the algorithm's capabilities for providing tele-operated collision-free operation. Finally, a set of human subject studies are performed to quantitatively compare the performance between the model-based algorithm, the basic risk field algorithm (a variant on potential field), and full manual control. The results show that the model-based algorithm performs significantly better than manual control in both the number of collisions and the UAV's average speed, both of which are extremely vital, for example, for UAV-assisted search and rescue applications. Compared to the potential-field-based algorithm, the model-based algorithm allowed the pilot to operate the UAV with higher average speeds

    A neural network methodology for path planning and coordination of car-like robots

    Get PDF
    A car-like indoor mobile robot is a kinematically constrained robot that can be modeled as a 2D object translating and rotating in the horizontal plane among well- defined obstacles. The kinematic constraints impose that the linear velocity of the robot is along its main axis (no sideways motion is possible) and restrict the range of admissible values for the steering angle. The goal of this study is to combine neural network techniques and motion planning algorithms to create a new methodology for coordinating the motion of multiple car-like robots avoiding collision with polygonal obstacles in a work environment. An incremental technique is used to develop this methodology. First, a strategy for planning the path of a point robot moving in the presence of obstacles is constructed. Second, this strategy is adapted to path planning for a polygonal robot. Third, holonomic and non-holonomic constraints are imposed on the robot and the method is further refined. Finally, a plan for the coordinated motion of multiple car-like robots is devised through use of the concept of coordination space --Abstract, page iii
    • …
    corecore