1,236,992 research outputs found

    Path integrals and degrees of freedom in many-body systems and relativistic field theories

    Full text link
    The identification of physical degrees of freedom is sometimes obscured in the path integral formalism, and this makes it difficult to impose some constraints or to do some approximations. I review a number of cases where the difficulty is overcame by deriving the path integral from the operator form of the partition function after such identification has been made.Comment: 15 pages, volume in honor of prof.Yu.A.Simono

    Cosmography beyond standard candles and rulers

    Full text link
    We perform a cosmographic analysis using several cosmological observables such as the luminosity distance moduli, the volume distance, the angular diameter distance and the Hubble parameter. These quantities are determined using different data sets: Supernovae type Ia and Gamma Ray Bursts, the Baryonic Acoustic Oscillations, the cosmic microwave background power spectrum and the Hubble parameter as measured from surveys of galaxies. This data set allows to put constraints on the cosmographic expansion with unprecedented precision. We also present forecasts for the coefficients of the kinematic expansion using future but realistic data sets: constraints on the coefficients of the expansions are likely to improve by a factor ten with the upcoming large scale structure probes. Finally, we derive the set of the cosmographic parameters for several cosmological models (including Λ\LambdaCDM) and compare them with our best fit set. While distance measurements are unable to discriminate among these models, we show that the inclusion of the Hubble data set leads to strong constraints on the lowest order coefficients and in particular it is incompatible with Λ\LambdaCDM at 3-σ\sigma confidence level. We discuss the reliability of this determination and suggest further observations which might be of crucial importance for the viability of cosmographic tests in the next future.Comment: 15 pages, 2 figures, 2 tables, Accepted for publication in PR

    Sonoluminescence and the QED vacuum

    Get PDF
    In this talk I shall describe an extension of the quantum-vacuum approach to sonoluminescence proposed several years ago by J.Schwinger. We shall first consider a model calculation based on Bogolubov coefficients relating the QED vacuum in the presence of an expanded bubble to that in the presence of a collapsed bubble. In this way we shall derive an estimate for the spectrum and total energy emitted. This latter will be shown to be proportional to the volume of space over which the refractive index changes, as Schwinger predicted. After this preliminary check we shall deal with the physical constraints that any viable dynamical model for SL has to satisfy in order to fit the experimental data. We shall emphasize the importance of the timescale of the change in refractive index. This discussion will led us to propose a somewhat different version of dynamical Casimir effect in which the change in volume of the bubble is no longer the only source for the change in the refractive index.Comment: 15 pages, 1 figure, uses sprocl.sty. Talk at the 4th Workshop on Quantum Field Theory Under the Influence of External Conditions, Leipzig, 14-18 September, 199

    Sloan Digital Sky Survey III Photometric Quasar Clustering: Probing the Initial Conditions of the Universe using the Largest Volume

    Full text link
    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z = 0.5 and z = 2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans ~11,000 square degrees and probes a volume of 80(Gpc/h)^3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~25% over a bin width of l ~10 - 15 on scales corresponding to matter-radiation equality and larger (l ~ 2 - 30). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+/-154 (1\sigma error). [Abridged]Comment: 35 pages, 15 figure

    Modeling water waves beyond perturbations

    Get PDF
    In this chapter, we illustrate the advantage of variational principles for modeling water waves from an elementary practical viewpoint. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible, and imposing some suitable subordinate constraints. This approach allows the construction of approximations without necessarily relying on a small parameter. This is illustrated via simple examples, namely the Serre equations in shallow water, a generalization of the Klein-Gordon equation in deep water and how to unify these equations in arbitrary depth. The chapter ends with a discussion and caution on how this approach should be used in practice.Comment: 15 pages, 1 figure, 39 references. This document is a contributed chapter to an upcoming volume to be published by Springer in Lecture Notes in Physics Series. Other author's papers can be downloaded at http://www.denys-dutykh.com

    Ram pressure statistics for bent tail radio galaxies

    Full text link
    In this paper we use the MareNostrum Universe Simulation, a large scale, hydrodynamic, non-radiative simulation in combination with a simple abundance matching approach to determine the ram pressure statistics for bent radio sources (BRSs). The abundance matching approach allows us to determine the locations of all galaxies with stellar masses >1011MSol> 10^{11} MSol in the simulation volume. Assuming ram pressure exceeding a critical value causes bent morphology, we compute the ratio of all galaxies exceeding the ram pressure limit (RPEX galaxies) relative to all galaxies in our sample. According to our model 50% of the RPEX galaxies at z=0z = 0 are found in clusters with masses larger than 1014.5MSol10^{14.5}MSol the other half resides in lower mass clusters. Therefore, the appearance of bent tail morphology alone does not put tight constraints on the host cluster mass. In low mass clusters, M<1014MSolM < 10^{14}MSol, RPEX galaxies are confined to the central 500 kpc whereas in clusters of >1015Msol> 10^{15}Msol they can be found at distances up to 1.5Mpc. Only clusters with masses >1015MSol> 10^{15}MSol are likely to host more than one BRS. Both criteria may prove useful in the search for distant, high mass clusters.Comment: 10 pages, 10 figures, Submitted to the Monthly Notices of the Royal Astronomical Societ
    corecore