486 research outputs found

    Ambiguity and constrained polymorphism.

    Get PDF
    This paper considers the problem of ambiguity in Haskell-like languages. Overloading resolution is characterized in the context of constrained polymorphism by the presence of unreachable variables in constraints on the type of the expression. A new definition of ambiguity is presented, where existence of more than one instance for the constraints on an expression type is considered only after overloading resolution. This introduces a clear distinction between ambiguity and overloading resolution, makes ambiguity more intuitive and independent from extra concepts, such as functional dependencies, and enables more programs to type-check as fewer ambiguities arise. The paper presents a type system and a type inference algorithm that includes: a constraint-set satisfiability function, that determines whether a given set of constraints is entailed or not in a given context, focusing on issues related to decidability, a constraint-set improvement function, for filtering out constraints for which overloading has been resolved, and a context-reduction function, for reducing constraint sets according to matching instances. A standard dictionary-style semantics for core Haskell is also presented

    An Effective Fixpoint Semantics for Linear Logic Programs

    Full text link
    In this paper we investigate the theoretical foundation of a new bottom-up semantics for linear logic programs, and more precisely for the fragment of LinLog that consists of the language LO enriched with the constant 1. We use constraints to symbolically and finitely represent possibly infinite collections of provable goals. We define a fixpoint semantics based on a new operator in the style of Tp working over constraints. An application of the fixpoint operator can be computed algorithmically. As sufficient conditions for termination, we show that the fixpoint computation is guaranteed to converge for propositional LO. To our knowledge, this is the first attempt to define an effective fixpoint semantics for linear logic programs. As an application of our framework, we also present a formal investigation of the relations between LO and Disjunctive Logic Programming. Using an approach based on abstract interpretation, we show that DLP fixpoint semantics can be viewed as an abstraction of our semantics for LO. We prove that the resulting abstraction is correct and complete for an interesting class of LO programs encoding Petri Nets.Comment: 39 pages, 5 figures. To appear in Theory and Practice of Logic Programmin

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Extending Nunchaku to Dependent Type Theory

    Get PDF
    Nunchaku is a new higher-order counterexample generator based on a sequence of transformations from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle, it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper, we present some ideas to extend Nunchaku with partial support for dependent types and type classes, to make frontends for Coq and other systems based on dependent type theory more useful.Comment: In Proceedings HaTT 2016, arXiv:1606.0542
    • …
    corecore