54,560 research outputs found

    Enforcement of Patterns by Constraint-Aware Model Transformations

    Get PDF
    Patterns are descriptions and solutions for recurring problems in software design and implementation. In this paper, some ideas towards a formal approach to the specification of patterns in model-driven engineering (MDE) is presented. The approach is based on the Diagram Predicate Framework which provides a formal approach to (meta)modelling, model transformation and model management in MDE. In particular, patterns are defined as diagrammatic specifications and constraint-aware model transformations are adapted to enforce patterns. Moreover, running examples are used to illustrate the facade design pattern in structural models

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved

    Transformation As Search

    Get PDF
    In model-driven engineering, model transformations are con- sidered a key element to generate and maintain consistency between re- lated models. Rule-based approaches have become a mature technology and are widely used in different application domains. However, in var- ious scenarios, these solutions still suffer from a number of limitations that stem from their injective and deterministic nature. This article pro- poses an original approach, based on non-deterministic constraint-based search engines, to define and execute bidirectional model transforma- tions and synchronizations from single specifications. Since these solely rely on basic existing modeling concepts, it does not require the intro- duction of a dedicated language. We first describe and formally define this model operation, called transformation as search, then describe a proof-of-concept implementation and discuss experiments on a reference use case in software engineering

    Saying Hello World with UML-RSDS - A Solution to the 2011 Instructive Case

    Full text link
    In this paper we apply the UML-RSDS notation and tools to the "Hello World" case studies and explain the underlying development process for this model transformation approach.Comment: In Proceedings TTC 2011, arXiv:1111.440

    A Constrained Object Model for Configuration Based Workflow Composition

    Full text link
    Automatic or assisted workflow composition is a field of intense research for applications to the world wide web or to business process modeling. Workflow composition is traditionally addressed in various ways, generally via theorem proving techniques. Recent research observed that building a composite workflow bears strong relationships with finite model search, and that some workflow languages can be defined as constrained object metamodels . This lead to consider the viability of applying configuration techniques to this problem, which was proven feasible. Constrained based configuration expects a constrained object model as input. The purpose of this document is to formally specify the constrained object model involved in ongoing experiments and research using the Z specification language.Comment: This is an extended version of the article published at BPM'05, Third International Conference on Business Process Management, Nancy Franc

    Automated verification of model transformations based on visual contracts

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10515-012-0102-yModel-Driven Engineering promotes the use of models to conduct the different phases of the software development. In this way, models are transformed between different languages and notations until code is generated for the final application. Hence, the construction of correct Model-to-Model (M2M) transformations becomes a crucial aspect in this approach. Even though many languages and tools have been proposed to build and execute M2M transformations, there is scarce support to specify correctness requirements for such transformations in an implementation-independent way, i.e., irrespective of the actual transformation language used. In this paper we fill this gap by proposing a declarative language for the specification of visual contracts, enabling the verification of transformations defined with any transformation language. The verification is performed by compiling the contracts into QVT to detect disconformities of transformation results with respect to the contracts. As a proof of concept, we also report on a graphical modeling environment for the specification of contracts, and on its use for the verification of transformations in several case studies.This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13, the Spanish Ministry of Science under grants TIN2008-02081 and TIN2011-24139, and the R&D programme of the Madrid Region under project S2009/TIC-1650

    Testing M2T/T2M Transformations

    Get PDF
    Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto TIN2011-2379

    Abstract Platform and Transformations for Model-Driven Service-Oriented Development

    Get PDF
    In this paper, we discuss the use of abstract platforms and transformation for designing applications according to the principles of the service-oriented architecture. We illustrate our approach by discussing the use of the service discovery pattern at a platform-independent design level. We show how a trader service can be specified at a high-level of abstraction and incorporated in an abstract platform for service-oriented development. Designers can then build platform-independent models of applications by composing application parts with this abstract platform. Application parts can use the trader service to publish and discover service offers. We discuss how the abstract platform can be realized into two target platforms, namely Web Services (with UDDI) and CORBA (with the OMG trader)

    Regression-free Synthesis for Concurrency

    Get PDF
    While fixing concurrency bugs, program repair algorithms may introduce new concurrency bugs. We present an algorithm that avoids such regressions. The solution space is given by a set of program transformations we consider in for repair process. These include reordering of instructions within a thread and inserting atomic sections. The new algorithm learns a constraint on the space of candidate solutions, from both positive examples (error-free traces) and counterexamples (error traces). From each counterexample, the algorithm learns a constraint necessary to remove the errors. From each positive examples, it learns a constraint that is necessary in order to prevent the repair from turning the trace into an error trace. We implemented the algorithm and evaluated it on simplified Linux device drivers with known bugs.Comment: for source code see https://github.com/thorstent/ConRepai
    corecore