26,481 research outputs found

    Constraint-based run-time state migration for live modeling

    Get PDF
    Live modeling enables modelers to incrementally update models as they are running and get immediate feedback about the impact of their changes. Changes introduced in a model may trigger inconsistencies between the model and its run-time state (e.g., deleting the current state in a statemachine); effectively requiring to migrate the run-time state to comply with the updated model. In this paper, we introduce an approach that enables to automatically migrate such runtime state based on declarative constraints defined by the language designer. We illustrate the approach using Nextep, a meta-modeling language for defining invariants and migration constraints on run-time state models. When a model changes, Nextep employs model finding techniques, backed by a solver, to automatically infer a new run-time model that satisfies the declared constraints. We apply Nextep to define migration strategies for two DSLs, and report on its expressiveness and performance

    Constraint-based Run-time State Migration for Live Modeling

    Get PDF
    Live modeling enables modelers to incrementally update models as they are running and get immediate feedback about the impact of their changes. Changes introduced in a model may trigger inconsistencies between the model and its run-time state (e.g., deleting the current state in a statemachine); effectively requiring to migrate the run-time state to comply with the updated model. In this paper, we introduce an approach that enables to automatically migrate such runtime state based on declarative constraints defined by the language designer. We illustrate the approach using Nextep, a meta-modeling language for defining invariants and migration constraints on run-time state models. When a model changes, Nextep employs model finding techniques, backed by a solver, to automatically infer a new run-time model that satisfies the declared constraints. We apply Nextep to define migration strategies for two DSLs, and report on its expressiveness and performance

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    On Reliability-Aware Server Consolidation in Cloud Datacenters

    Full text link
    In the past few years, datacenter (DC) energy consumption has become an important issue in technology world. Server consolidation using virtualization and virtual machine (VM) live migration allows cloud DCs to improve resource utilization and hence energy efficiency. In order to save energy, consolidation techniques try to turn off the idle servers, while because of workload fluctuations, these offline servers should be turned on to support the increased resource demands. These repeated on-off cycles could affect the hardware reliability and wear-and-tear of servers and as a result, increase the maintenance and replacement costs. In this paper we propose a holistic mathematical model for reliability-aware server consolidation with the objective of minimizing total DC costs including energy and reliability costs. In fact, we try to minimize the number of active PMs and racks, in a reliability-aware manner. We formulate the problem as a Mixed Integer Linear Programming (MILP) model which is in form of NP-complete. Finally, we evaluate the performance of our approach in different scenarios using extensive numerical MATLAB simulations.Comment: International Symposium on Parallel and Distributed Computing (ISPDC), Innsbruck, Austria, 201

    Fault Tolerant Adaptive Parallel and Distributed Simulation through Functional Replication

    Full text link
    This paper presents FT-GAIA, a software-based fault-tolerant parallel and distributed simulation middleware. FT-GAIA has being designed to reliably handle Parallel And Distributed Simulation (PADS) models, which are needed to properly simulate and analyze complex systems arising in any kind of scientific or engineering field. PADS takes advantage of multiple execution units run in multicore processors, cluster of workstations or HPC systems. However, large computing systems, such as HPC systems that include hundreds of thousands of computing nodes, have to handle frequent failures of some components. To cope with this issue, FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes. Moreover, FT-GAIA offers some protection against Byzantine failures, since interaction messages among the simulated entities are replicated as well, so that the receiving entity can identify and discard corrupted messages. Results from an analytical model and from an experimental evaluation show that FT-GAIA provides a high degree of fault tolerance, at the cost of a moderate increase in the computational load of the execution units.Comment: arXiv admin note: substantial text overlap with arXiv:1606.0731

    Load-Sharing Policies in Parallel Simulation of Agent-Based Demographic Models

    Get PDF
    Execution parallelism in agent-Based Simulation (ABS) allows to deal with complex/large-scale models. This raises the need for runtime environments able to fully exploit hardware parallelism, while jointly offering ABS-suited programming abstractions. In this paper, we target last-generation Parallel Discrete Event Simulation (PDES) platforms for multicore systems. We discuss a programming model to support both implicit (in-place access) and explicit (message passing) interactions across concurrent Logical Processes (LPs). We discuss different load-sharing policies combining event rate and implicit/explicit LPs’ interactions. We present a performance study conducted on a synthetic test case, representative of a class of agent-based models

    Using PLASC Data to Identify Patterns of Commuting to School, Residential Migration and Movement Between Schools in Leeds

    Get PDF
    New patterns of interaction emerge annually between the places where schoolchildren live and go to school. This paper concentrates on understanding the dynamics of the 'journey to learn'. It explains how PLASC data for Leeds, a city in northern England, can be used to measure daily pupil movements and to investigate school territories, but also to identify pupil movements between schools and between places of usual residence. The longitudinal nature of the data provides the opportunity for checking the authenticity of individual record attributes from one eyar to another and for making adjustments to improve consistency. Consideration is given to how these flows might be modelled in order to support the local authority (Education Leeds) make better decisions when planning the provision of primary and secondary schools across the district in future years
    • …
    corecore