14,402 research outputs found

    Connectionist natural language parsing

    Get PDF
    The key developments of two decades of connectionist parsing are reviewed. Connectionist parsers are assessed according to their ability to learn to represent syntactic structures from examples automatically, without being presented with symbolic grammar rules. This review also considers the extent to which connectionist parsers offer computational models of human sentence processing and provide plausible accounts of psycholinguistic data. In considering these issues, special attention is paid to the level of realism, the nature of the modularity, and the type of processing that is to be found in a wide range of parsers

    SARDSRN: A NEURAL NETWORK SHIFT-REDUCE PARSER

    Get PDF
    Simple Recurrent Networks (SRNs) have been widely used in natural language tasks. SARDSRN extends the SRN by explicitly representing the input sequence in a SARDNET self-organizing map. The distributed SRN component leads to good generalization and robust cognitive properties, whereas the SARDNET map provides exact representations of the sentence constituents. This combination allows SARDSRN to learn to parse sentences with more complicated structure than can the SRN alone, and suggests that the approach could scale up to realistic natural language

    Deep Multitask Learning for Semantic Dependency Parsing

    Full text link
    We present a deep neural architecture that parses sentences into three semantic dependency graph formalisms. By using efficient, nearly arc-factored inference and a bidirectional-LSTM composed with a multi-layer perceptron, our base system is able to significantly improve the state of the art for semantic dependency parsing, without using hand-engineered features or syntax. We then explore two multitask learning approaches---one that shares parameters across formalisms, and one that uses higher-order structures to predict the graphs jointly. We find that both approaches improve performance across formalisms on average, achieving a new state of the art. Our code is open-source and available at https://github.com/Noahs-ARK/NeurboParser.Comment: Proceedings of ACL 201

    Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing

    Full text link
    We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.Comment: NAACL 201

    The neurocognition of syntactic processing

    Get PDF

    Parallel Distributed Grammar Engineering for Practical Applications

    Get PDF
    Based on a detailed case study of parallel grammar development distributed across two sites, we review some of the requirements for regression testing in grammar engineering, summarize our approach to systematic competence and performance profiling, and discuss our experience with grammar development for a commercial application. If possible, the workshop presentation will be organized around a software demonstration

    From surface dependencies towards deeper semantic representations [Semantic representations]

    Get PDF
    In the past, a divide could be seen between ā€™deepā€™ parsers on the one hand, which construct a semantic representation out of their input, but usually have significant coverage problems, and more robust parsers on the other hand, which are usually based on a (statistical) model derived from a treebank and have larger coverage, but leave the problem of semantic interpretation to the user. More recently, approaches have emerged that combine the robustness of datadriven (statistical) models with more detailed linguistic interpretation such that the output could be used for deeper semantic analysis. Cahill et al. (2002) use a PCFG-based parsing model in combination with a set of principles and heuristics to derive functional (f-)structures of Lexical-Functional Grammar (LFG). They show that the derived functional structures have a better quality than those generated by a parser based on a state-of-the-art hand-crafted LFG grammar. Advocates of Dependency Grammar usually point out that dependencies already are a semantically meaningful representation (cf. Menzel, 2003). However, parsers based on dependency grammar normally create underspecified representations with respect to certain phenomena such as coordination, apposition and control structures. In these areas they are too "shallow" to be directly used for semantic interpretation. In this paper, we adopt a similar approach to Cahill et al. (2002) using a dependency-based analysis to derive functional structure, and demonstrate the feasibility of this approach using German data. A major focus of our discussion is on the treatment of coordination and other potentially underspecified structures of the dependency data input. F-structure is one of the two core levels of syntactic representation in LFG (Bresnan, 2001). Independently of surface order, it encodes abstract syntactic functions that constitute predicate argument structure and other dependency relations such as subject, predicate, adjunct, but also further semantic information such as the semantic type of an adjunct (e.g. directional). Normally f-structure is captured as a recursive attribute value matrix, which is isomorphic to a directed graph representation. Figure 5 depicts an example target f-structure. As mentioned earlier, these deeper-level dependency relations can be used to construct logical forms as in the approaches of van Genabith and Crouch (1996), who construct underspecified discourse representations (UDRSs), and Spreyer and Frank (2005), who have robust minimal recursion semantics (RMRS) as their target representation. We therefore think that f-structures are a suitable target representation for automatic syntactic analysis in a larger pipeline of mapping text to interpretation. In this paper, we report on the conversion from dependency structures to fstructure. Firstly, we evaluate the f-structure conversion in isolation, starting from hand-corrected dependencies based on the TĆ¼Ba-D/Z treebank and Versley (2005)Ā“s conversion. Secondly, we start from tokenized text to evaluate the combined process of automatic parsing (using Foth and Menzel (2006)Ā“s parser) and f-structure conversion. As a test set, we randomly selected 100 sentences from TĆ¼Ba-D/Z which we annotated using a scheme very close to that of the TiGer Dependency Bank (Forst et al., 2004). In the next section, we sketch dependency analysis, the underlying theory of our input representations, and introduce four different representations of coordination. We also describe Weighted Constraint Dependency Grammar (WCDG), the dependency parsing formalism that we use in our experiments. Section 3 characterises the conversion of dependencies to f-structures. Our evaluation is presented in section 4, and finally, section 5 summarises our results and gives an overview of problems remaining to be solved
    • ā€¦
    corecore