39 research outputs found

    Asynchronous haptic simulation of contacting deformable objects with variable stiffness

    Get PDF
    International audienceAbstract--This paper presents a new asynchronous approach for haptic rendering of deformable objects. When stiff nonlinear deformations take place, they introduce important and rapid variations of the force sent to the user. This problem is similar to the stiff virtual wall for which a high refresh rate is required to obtain a stable haptic feedback. However, when dealing with several interacting deformable objects, it is usually impossible to simulate all objects at high rates. To address this problem we propose a quasi-static framework that allows for stable interactions of asynchronously computed deformable objects. In the proposed approach, a deformable object can be computed at high refresh rates, while the remaining deformable virtual objects remain computed at low refresh rates. Moreover, contacts and other constraints between the different objects of the virtual environment are accurately solved using a shared Linear Complementarity Problem (LCP). Finally, we demonstrate our method on two test cases: a snap-in example involving non-linear deformations and a virtual thread interacting with a deformable object

    SOFA: A Multi-Model Framework for Interactive Physical Simulation

    Get PDF
    International audienceSOFA (Simulation Open Framework Architecture) is an open-source C++ library primarily targeted at interactive computational medical simulation. SOFA facilitates collaborations between specialists from various domains, by decomposing complex simulators into components designed independently and organized in a scenegraph data structure. Each component encapsulates one of the aspects of a simulation, such as the degrees of freedom, the forces and constraints, the differential equations, the main loop algorithms, the linear solvers, the collision detection algorithms or the interaction devices. The simulated objects can be represented using several models, each of them optimized for a different task such as the computation of internal forces, collision detection, haptics or visual display. These models are synchronized during the simulation using a mapping mechanism. CPU and GPU implementations can be transparently combined to exploit the computational power of modern hardware architectures. Thanks to this flexible yet efficient architecture, \sofa{} can be used as a test-bed to compare models and algorithms, or as a basis for the development of complex, high-performance simulators

    Control of Elastic Soft Robots based on Real-Time Finite Element Method

    Get PDF
    International audienceIn this paper, we present a new method for the control of soft robots with elastic behavior, piloted by several actuators. The central contribution of this work is the use of the Finite Element Method (FEM), computed in real-time, in the control algorithm. The FEM based simulation computes the nonlinear deformations of the robots at interactive rates. The model is completed by Lagrange multipliers at the actuation zones and at the end-effector position. A reduced compliance matrix is built in order to deal with the necessary inversion of the model. Then, an iterative algorithm uses this compliance matrix to find the contribution of the actuators (force and/or position) that will deform the structure so that the terminal end of the robot follows a given position. Additional constraints, like rigid or deformable obstacles, or the internal characteristics of the actuators are integrated in the control algorithm. We illustrate our method using simulated examples of both serial and parallel structures and we validate it on a real 3D soft robot made of silicon

    Vascular neurosurgery simulation with bimanual haptic feedback

    Get PDF
    International audienceVirtual surgical simulators face many computational challenges: they need to provide biophysical accuracy, realistic feed-backs and high-rate responses. Better biophysical accuracy and more realistic feed-backs (be they visual, haptic.. .) induce more computational footprint. State-of-the-art approaches use high-performance hardware or find an acceptable trade-off between performance and accuracy to deliver interactive yet pedagogically relevant simulators. In this paper, we propose an interactive vascular neurosurgery simulator that provides bi-manual interaction with haptic feedback. The simulator is an original combination of states-of-the-art techniques that allows visual realism, bio-physical realism, complex interactions with the anatomical structures and the instruments and haptic feedback. Training exercises are also proposed to learn and to perform the different steps of intracranial aneurysm surgery (IAS). We assess the performance of our simulator with quantitative performance benchmarks and qualitative assessments of junior and senior clinicians

    Optimization-Based wearable tactile rendering

    Get PDF
    Novel wearable tactile interfaces offer the possibility to simulate tactile interactions with virtual environments directly on our skin. But, unlike kinesthetic interfaces, for which haptic rendering is a well explored problem, they pose new questions about the formulation of the rendering problem. In this work, we propose a formulation of tactile rendering as an optimization problem, which is general for a large family of tactile interfaces. Based on an accurate simulation of contact between a finger model and the virtual environment, we pose tactile rendering as the optimization of the device configuration, such that the contact surface between the device and the actual finger matches as close as possible the contact surface in the virtual environment. We describe the optimization formulation in general terms, and we also demonstrate its implementation on a thimble-like wearable device. We validate the tactile rendering formulation by analyzing its force error, and we show that it outperforms other approaches

    Software toolkit for modeling, simulation and control of soft robots

    Get PDF
    International audienceThe technological differences between traditional robotics and soft robotics have an impact on all of the modeling tools generally in use, including direct kinematics and inverse models, Jacobians, and dynamics. Due to the lack of precise modeling and control methods for soft robots, the promising concepts of using such design for complex applications (medicine, assistance, domestic robotics...) cannot be practically implemented. This paper presents a first unified software framework dedicated to modeling, simulation and control of soft robots. The framework relies on continuum mechanics for modeling the robotic parts and boundary conditions like actuators or contacts using a unified representation based on Lagrange multipliers. It enables the digital robot to be simulated in its environment using a direct model. The model can also be inverted online using an optimization-based method which allows to control the physical robots in the task space. To demonstrate the effectiveness of the approach, we present various soft robots scenarios including ones where the robot is interacting with its environment. The software has been built on top of SOFA, an open-source framework for deformable online simulation and is available at https://project.inria.fr/softrobot

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Haptic technology for micro-robotic cell injection training systems — a review

    Full text link
    Currently, the micro-robotic cell injection procedure is performed manually by expert human bio-operators. In order to be proficient at the task, lengthy and expensive dedicated training is required. As such, effective specialized training systems for this procedure can prove highly beneficial. This paper presents a comprehensive review of haptic technology relevant to cell injection training and discusses the feasibility of developing such training systems, providing researchers with an inclusive resource enabling the application of the presented approaches, or extension and advancement of the work. A brief explanation of cell injection and the challenges associated with the procedure are first presented. Important skills, such as accuracy, trajectory, speed and applied force, which need to be mastered by the bio-operator in order to achieve successful injection, are then discussed. Then an overview of various types of haptic feedback, devices and approaches is presented. This is followed by discussion on the approaches to cell modeling. Discussion of the application of haptics to skills training across various fields and haptically-enabled virtual training systems evaluation are then presented. Finally, given the findings of the review, this paper concludes that a haptically-enabled virtual cell injection training system is feasible and recommendations are made to developers of such systems

    Preoperative trajectory planning for percutaneous procedures in deformable environments

    Get PDF
    International audienceIn image-guided percutaneous interventions, a precise planning of the needle path is a key factor to a successful intervention. In this paper we propose a novel method for computing a patient-specific optimal path for such interventions, accounting for both the deformation of the needle and soft tissues due to the insertion of the needle in the body. To achieve this objective, we propose an optimization method for estimating preoperatively a curved trajectory allowing to reach a target even in the case of tissue motion and needle bending. Needle insertions are simulated and regarded as evaluations of the objective function by the iterative planning process. In order to test the planning algorithm, it is coupled with a fast needle insertion simulation involving a flexible needle model and soft tissue finite element modeling, and experimented on the use-case of thermal ablation of liver tumors. Our algorithm has been successfully tested on twelve datasets of patient-specific geometries. Fast convergence to the actual optimal solution has been shown. This method is designed to be adapted to a wide range of percutaneous interventions

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product
    corecore