1,250 research outputs found

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs

    Get PDF

    Temporal analysis and scheduling of hard real-time radios running on a multi-processor

    Get PDF
    On a multi-radio baseband system, multiple independent transceivers must share the resources of a multi-processor, while meeting each its own hard real-time requirements. Not all possible combinations of transceivers are known at compile time, so a solution must be found that either allows for independent timing analysis or relies on runtime timing analysis. This thesis proposes a design flow and software architecture that meets these challenges, while enabling features such as independent transceiver compilation and dynamic loading, and taking into account other challenges such as ease of programming, efficiency, and ease of validation. We take data flow as the basic model of computation, as it fits the application domain, and several static variants (such as Single-Rate, Multi-Rate and Cyclo-Static) have been shown to possess strong analytical properties. Traditional temporal analysis of data flow can provide minimum throughput guarantees for a self-timed implementation of data flow. Since transceivers may need to guarantee strictly periodic execution and meet latency requirements, we extend the analysis techniques to show that we can enforce strict periodicity for an actor in the graph; we also provide maximum latency analysis techniques for periodic, sporadic and bursty sources. We propose a scheduling strategy and an automatic scheduling flow that enable the simultaneous execution of multiple transceivers with hard-realtime requirements, described as Single-Rate Data Flow (SRDF) graphs. Each transceiver has its own execution rate and starts and stops independently from other transceivers, at times unknown at compile time, on a multiprocessor. We show how to combine scheduling and mapping decisions with the input application data flow graph to generate a worst-case temporal analysis graph. We propose algorithms to find a mapping per transceiver in the form of clusters of statically-ordered actors, and a budget for either a Time Division Multiplex (TDM) or Non-Preemptive Non-Blocking Round Robin (NPNBRR) scheduler per cluster per transceiver. The budget is computed such that if the platform can provide it, then the desired minimum throughput and maximum latency of the transceiver are guaranteed, while minimizing the required processing resources. We illustrate the use of these techniques to map a combination of WLAN and TDS-CDMA receivers onto a prototype Software-Defined Radio platform. The functionality of transceivers for standards with very dynamic behavior – such as WLAN – cannot be conveniently modeled as an SRDF graph, since SRDF is not capable of expressing variations of actor firing rules depending on the values of input data. Because of this, we propose a restricted, customized data flow model of computation, Mode-Controlled Data Flow (MCDF), that can capture the data-value dependent behavior of a transceiver, while allowing rigorous temporal analysis, and tight resource budgeting. We develop a number of analysis techniques to characterize the temporal behavior of MCDF graphs, in terms of maximum latencies and throughput. We also provide an extension to MCDF of our scheduling strategy for SRDF. The capabilities of MCDF are then illustrated with a WLAN 802.11a receiver model. Having computed budgets for each transceiver, we propose a way to use these budgets for run-time resource mapping and admissibility analysis. During run-time, at transceiver start time, the budget for each cluster of statically-ordered actors is allocated by a resource manager to platform resources. The resource manager enforces strict admission control, to restrict transceivers from interfering with each other’s worst-case temporal behaviors. We propose algorithms adapted from Vector Bin-Packing to enable the mapping at start time of transceivers to the multi-processor architecture, considering also the case where the processors are connected by a network on chip with resource reservation guarantees, in which case we also find routing and resource allocation on the network-on-chip. In our experiments, our resource allocation algorithms can keep 95% of the system resources occupied, while suffering from an allocation failure rate of less than 5%. An implementation of the framework was carried out on a prototype board. We present performance and memory utilization figures for this implementation, as they provide insights into the costs of adopting our approach. It turns out that the scheduling and synchronization overhead for an unoptimized implementation with no hardware support for synchronization of the framework is 16.3% of the cycle budget for a WLAN receiver on an EVP processor at 320 MHz. However, this overhead is less than 1% for mobile standards such as TDS-CDMA or LTE, which have lower rates, and thus larger cycle budgets. Considering that clock speeds will increase and that the synchronization primitives can be optimized to exploit the addressing modes available in the EVP, these results are very promising

    Proceedings of the real-time database workshop, Eindhoven, 23 February 1995

    Get PDF

    Execution Synthesis: A Technique for Automating the Debugging of Software

    Get PDF
    Debugging real systems is hard, requires deep knowledge of the target code, and is time-consuming. Bug reports rarely provide sufficient information for debugging, thus forcing developers to turn into detectives searching for an explanation of how the program could have arrived at the reported failure state. This thesis introduces execution synthesis, a technique for automating this detective work: given a program and a bug report, execution synthesis automatically produces an execution of the program that leads to the reported bug symptoms. Using a combination of static analysis and symbolic execution, the technique “synthesizes” a thread schedule and various required program inputs that cause the bug to manifest. The synthesized execution can be played back deterministically in a regular debugger, like gdb. This is particularly useful in debugging concurrency bugs, because it transforms otherwise non-deterministic bugs into bugs that can be deterministically observed in a debugger. Execution synthesis requires no runtime recording, and no program or hardware modifications, thus incurring no runtime overhead. This makes it practical for use in production systems. This thesis includes a theoretical analysis of execution synthesis as well as empirical evidence that execution synthesis is successful in starting from mere bug reports and reproducing on its own concurrency and memory safety bugs in real systems, taking on the order of minutes. This thesis also introduces reverse execution synthesis, an automated debugging technique that takes a coredump obtained after a failure and automatically computes the suffix of an execution that leads to that coredump. Reverse execution synthesis generates the necessary information to then play back this suffix in a debugger deterministically as many times as needed to complete the debugging process. Since it synthesizes an execution suffix instead of the entire execution, reverse execution is particularly well suited for arbitrarily long executions in which the failure and its root cause occur within a short time span, so developers can use a short execution suffix to debug the problem. The thesis also shows how execution synthesis can be combined with recording techniques in order to automatically classify data races and to efficiently debug deadlock bugs
    • …
    corecore