5,034 research outputs found

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Open issues in semantic query optimization in relational DBMS

    Get PDF
    After two decades of research into Semantic Query Optimization (SQO) there is clear agreement as to the efficacy of SQO. However, although there are some experimental implementations there are still no commercial implementations. We first present a thorough analysis of research into SQO. We identify three problems which inhibit the effective use of SQO in Relational Database Management Systems(RDBMS). We then propose solutions to these problems and describe first steps towards the implementation of an effective semantic query optimizer for relational databases

    Structuring the process of integrity maintenance (extended version)

    Get PDF
    Two different approaches have been traditionally considered for dealing with the process of integrity constraints enforcement: integrity checking and integrity maintenance. However, while previous research in the first approach has mainly addressed efficiency issues, research in the second approach has been mainly concentrated in being able to generate all possible repairs that falsify an integrity constraint violation. In this paper we address efficiency issues during the process of integrity maintenance. In this sense, we propose a technique which improves efficiency of existing methods by defining the order in which maintenance of integrity constraints should be performed. Moreover, we use also this technique for being able to handle in an integrated way the integrity constraintsPostprint (published version

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Automatic generation of simplified weakest preconditions for integrity constraint verification

    Get PDF
    Given a constraint cc assumed to hold on a database BB and an update uu to be performed on BB, we address the following question: will cc still hold after uu is performed? When BB is a relational database, we define a confluent terminating rewriting system which, starting from cc and uu, automatically derives a simplified weakest precondition wp(c,u)wp(c,u) such that, whenever BB satisfies wp(c,u)wp(c,u), then the updated database u(B)u(B) will satisfy cc, and moreover wp(c,u)wp(c,u) is simplified in the sense that its computation depends only upon the instances of cc that may be modified by the update. We then extend the definition of a simplified wp(c,u)wp(c,u) to the case of deductive databases; we prove it using fixpoint induction
    corecore