5,386 research outputs found

    Cores of Countably Categorical Structures

    Full text link
    A relational structure is a core, if all its endomorphisms are embeddings. This notion is important for computational complexity classification of constraint satisfaction problems. It is a fundamental fact that every finite structure has a core, i.e., has an endomorphism such that the structure induced by its image is a core; moreover, the core is unique up to isomorphism. Weprove that every \omega -categorical structure has a core. Moreover, every \omega-categorical structure is homomorphically equivalent to a model-complete core, which is unique up to isomorphism, and which is finite or \omega -categorical. We discuss consequences for constraint satisfaction with \omega -categorical templates

    Datalog and Constraint Satisfaction with Infinite Templates

    Full text link
    On finite structures, there is a well-known connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates. If the template Gamma is omega-categorical, we present various equivalent characterizations of those Gamma such that the constraint satisfaction problem (CSP) for Gamma can be solved by a Datalog program. We also show that CSP(Gamma) can be solved in polynomial time for arbitrary omega-categorical structures Gamma if the input is restricted to instances of bounded treewidth. Finally, we characterize those omega-categorical templates whose CSP has Datalog width 1, and those whose CSP has strict Datalog width k.Comment: 28 pages. This is an extended long version of a conference paper that appeared at STACS'06. In the third version in the arxiv we have revised the presentation again and added a section that relates our results to formalizations of CSPs using relation algebra

    An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction

    Full text link
    We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates

    On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction

    Full text link
    The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).Comment: Extended abstract appeared at 25th Symposium on Logic in Computer Science (LICS 2010). This version will appear in the LMCS special issue associated with LICS 201

    Distance Constraint Satisfaction Problems

    Full text link
    We study the complexity of constraint satisfaction problems for templates Γ\Gamma that are first-order definable in (Z;succ)(\Bbb Z; succ), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Gamma is locally finite (i.e., the Gaifman graph of Γ\Gamma has finite degree). We show that one of the following is true: The structure Gamma is homomorphically equivalent to a structure with a d-modular maximum or minimum polymorphism and CSP(Γ)\mathrm{CSP}(\Gamma) can be solved in polynomial time, or Γ\Gamma is homomorphically equivalent to a finite transitive structure, or CSP(Γ)\mathrm{CSP}(\Gamma) is NP-complete.Comment: 35 pages, 2 figure
    • …
    corecore